

py7zr – a 7z library on python

	User Guide
	Getting started
	Install

	Dependencies

	Run Command

	Command-Line Interfaces
	Command-line options

	Common command options

	Create command options

	Programming APIs
	Extraction

	Make archive

	Append files to archive

	Extraction from multi-volume archive

	Presentation material

	API Documentation
	py7zr — 7-Zip archive library

	Class description
	ArchiveInfo Object

	SevenZipFile Object

	Compression Methods

	Possible filters value

	Contributor guide
	Development environment

	Code Contributions

	Profiling

	Class and module design

	Classes details

	.7z format specification
	Abstract

	Copyright Notice

	Introduction
	Purpose

	Intended audience

	Scope

	Trademarks

	Motivation

	Notations

	Data Representations
	BYTE

	BYTEARRAY

	String

	Integers

	BitField

	BooleanList

	File format
	Signature Header

	Property IDs

	Header encode Information

	Header

	Pack Information

	Coders Information

	Folders

	Codec IDs

	Substreams Information

	Files Information

	File type and a way
	Normal files

	Empty files

	Directories

	Special Files

	Appendix: BNF expression (Informative)

	Appendix: CRC algorithm (normative)

	Appendix: Rationale
	Byte order

	CRC32

	Encode

	Extract

	UTF-16-LE

	UTF-8

	Authors

	Glossary

	Py7zr Changelog

Indices and tables

	Index

	Module Index

	Search Page

User Guide

The 7z file format is a popular archive and compression format in recent days.
This module provides tools to read, write and list 7z file. Features is not implemented
to update and append a 7z file. py7zr does not support self-extracting archive,
aka. SFX file, and only support plain 7z archive file.

Getting started

Install

The py7zr is written by Python and can be downloaded from PyPI(aka. Python Package Index)
using standard ‘pip’ command as like follows;

$ pip install py7zr

The py7zr depends on several external libraries. You should install these libraries with py7zr.
There are PyCryptodome, PyZstd, PyPPMd, bcj-cffi, texttable, and multivolumefile.
These pakcages are automatically installed when installing with pip command.

Dependencies

There are several dependencies to support algorithms and CLI expressions.

	Package

	Purpose

	PyCryptodomex [https://www.pycryptodome.org/en/latest/index.html]

	7zAES encryption

	PyZstd [https://pypi.org/project/pyzstd]

	ZStandard compression

	PyPPMd [https://pypi.org/project/pyppmd]

	PPMd compression

	Brotli [https://pypi.org/project/Brotli]

	Brotli compression (CPython)

	BrotliCFFI [https://pypi.org/project/brotlicffi]

	Brotli compression (PyPy)

	zipfile-deflate64 [https://github.com/brianhelba/zipfile-deflate64]

	DEFLATE64 decompression

	pybcj [https://pypi.org/project/pybcj]

	BCJ filters

	multivolumefile [https://pypi.org/project/multivolumefile]

	Multi-volume archive read/write

	texttable [https://pypi.org/project/texttable]

	CLI formatter

Run Command

‘py7zr’ is a command script. You can run extracting a target file target.7z
then command line become as such as follows;

$ py7zr x target.7z

When you want to create an archive from a files and directory under the current
directory ‘d’, command line become as such as follows;

$ py7zr c target.7z d/

Command-Line Interfaces

The py7zr module provides a simple command-line interface to interact
with 7z archives.

If you want to extract a 7z archive into the specified directory, use
the x subcommand:

$ python -m py7zr x monty.7z target-dir/
$ py7zr x monty.7z

For a list of the files in a 7z archive, use the l subcommand:

$ python -m py7zr l monty.7z
$ py7zr l monty.7z

Command-line options

	
l <7z file>

	List files in a 7z file.

	
x <7z file> [<output_dir>]

	Extract 7z file into target directory.

	
c <7z file> <base_dir>

	Create 7zip archive from base_directory

	
a <7z file> <base_dir>

	Append files from base_dir to existent 7zip archive.

	
i <7z file>

	Show archive information of specified 7zip archive.

	
t <7z file>

	Test whether the 7z file is valid or not.

Common command options

	
-P --password

	Extract, list or create password protected archive. py7zr will prompt user input.

	
--verbose

	Show verbose debug log.

Create command options

	
-v | --volume {Size}[b|k|m|g]

	Create multi-volume archive with Size. Usable with ‘c’ sub-command.

Programming APIs

Extraction

Here is a several example for extraction from your python program.
You can write it with very clean syntax because py7zr supports context maanager.

import py7zr
with py7zr.SevenZipFile("Archive.7z", 'r') as archive:
 archive.extractall(path="/tmp")

This example extract a 7-zip archive file “Archive.7z” into “/tmp” target directory.

Make archive

Here is a simple example to make 7-zip archive.

import py7zr
with py7zr.SevenZipFile("Archive.7z", 'w') as archive:
 archive.writeall("target/")

Append files to archive

Here is a simple example to append some files into existent
7-zip archive.

import py7zr
with py7zr.SevenZipFile("Archive.7z", 'a') as archive:
 archive.write("additional_file.txt")

Extraction from multi-volume archive

You should concatenate multi-volume archives into single archive file before
call py7zr, or consider using files wrapping class that handle multiple files
as a virtual single file, (ex. multivolumefile library)

import py7zr
filenames = ['example.7z.0001', 'example.7z.0002']
with open('result.7z', 'ab') as outfile: # append in binary mode
 for fname in filenames:
 with open(fname, 'rb') as infile: # open in binary mode also
 outfile.write(infile.read())
with py7zr.SevenZipFile("result.7z", "r") as archive:
 archive.extractall()
os.unlink("result.7z)

Here is another example. This example use multivolumefile library.
The multivolumefile library is in pre-alpha status, so it is not recommend to use
production system.

pip install py7zr multivolumefile

When there are files named, ‘example.7z.0001’, ‘example.7z.0002’, and so on,
following code will extract multi-volume archive.

import multivolumefile
import py7zr
with multivolumefile.open('example.7z', mode='rb') as target_archive:
 with SevenZipFile(target_archive, 'r') as archive:
 archive.extractall()

If you want to create multi volume archive using multivolumefile library,
following example do it for you.

import multivolumefile
import py7zr

target = pathlib.Path('/target/directory/')
with multivolumefile.open('example.7z', mode='wb', volume_size=10240) as target_archive:
 with SevenZipFile(target_archive, 'w') as archive:
 archive.writeall(target, 'target')

Presentation material

See Introductory presentation(PDF),
and Introductory presentation(ODP).

API Documentation

py7zr — 7-Zip archive library

The module is built upon awesome development effort and knowledge of pylzma module
and its py7zlib.py program by Joachim Bauch. Great appreciation for Joachim!

The module defines the following items:

	
exception py7zr.Bad7zFile

	The error raised for bad 7z files.

	
class py7zr.SevenZipFile

	The class for reading 7z files. See section sevenzipfile-object

	
class py7zr.FileInfo

	The class used to represent information about a member of an archive file. See section

	
py7zr.is_7zfile(filename)

	Returns True if filename is a valid 7z file based on its magic number,
otherwise returns False. filename may be a file or file-like object too.

	
py7zr.unpack_7zarchive(archive, path, extra=None)

	Helper function to intend to use with shutil module which offers a number of high-level operations on files
and collections of files. Since shutil has a function to register decompressor of archive, you can register
an helper function and then you can extract archive by calling shutil.unpack_archive()

shutil.register_unpack_format('7zip', ['.7z'], unpack_7zarchive)
shutil.unpack_archive(filename, [, extract_dir])

	
py7zr.pack_7zarchive(archive, path, extra=None)

	Helper function to intend to use with shutil module which offers a number of high-level operations on files
and collections of files. Since shutil has a function to register maker of archive, you can register
an helper function and then you can produce archive by calling shutil.make_archive()

shutil.register_archive_format('7zip', pack_7zarchive, description='7zip archive')
shutil.make_archive(base_name, '7zip', base_dir)

See also

(external link) shutil [https://docs.python.org/3/library/shutil.html] shutil module offers a number of high-level operations on files and collections of files.

Class description

ArchiveInfo Object

	
class py7zr.ArchiveInfo(filename, stat, header_size, method_names, solid, blocks, uncompressed)

	Data only python object to hold information of archive.
The object can be retrieved by archiveinfo() method of SevenZipFile object.

	
py7zr.filename: str

	filename of 7zip archive. If SevenZipFile object is created from BinaryIO object,
it becomes None.

	
py7zr.stat: stat_result

	fstat object of 7zip archive. If SevenZipFile object is created from BinaryIO object,
it becomes None.

	
py7zr.header_size: int

	header size of 7zip archive.

	
py7zr.method_names: List[str]

	list of method names used in 7zip archive. If method is not supported by py7zr,
name has a postfix asterisk(*) mark.

	
py7zr.solid: bool

	Whether is 7zip archive a solid compression or not.

	
py7zr.blocks: int

	number of compression block(s)

	
py7zr.uncompressed: int

	total uncompressed size of files in 7zip archive

SevenZipFile Object

	
class py7zr.SevenZipFile(file, mode='r', filters=None, dereference=False, password=None)

	Open a 7z file, where file can be a path to a file (a string), a
file-like object or a path-like object.

The mode parameter should be 'r' to read an existing
file, 'w' to truncate and write a new file, 'a' to append to an
existing file, or 'x' to exclusively create and write a new file.
If mode is 'x' and file refers to an existing file,
a FileExistsError will be raised.
If mode is 'r' or 'a', the file should be seekable.

The filters parameter controls the compression algorithms to use when
writing files to the archive.

SevenZipFile class has a capability as context manager. It can handle
‘with’ statement.

If dereference is False, add symbolic and hard links to the archive.
If it is True, add the content of the target files to the archive.
This has no effect on systems that do not support symbolic links.

When password given, py7zr handles an archive as an encrypted one.

	
SevenZipFile.close()

	Close the archive file and release internal buffers. You must
call close() before exiting your program or most records will
not be written.

	
SevenZipFile.getnames()

	Return a list of archive files by name.

	
SevenZipFile.needs_password()

	Return True if the archive is encrypted, or is going to create
encrypted archive. Otherwise return False

	
SevenZipFile.extractall(path=None)

	Extract all members from the archive to current working directory. path
specifies a different directory to extract to.

	
SevenZipFile.extract(path=None, targets=None)

	Extract specified pathspec archived files to current working directory.
‘path’ specifies a differenct directory to extract to.

‘targets’ is a list of archived files to be extracted. py7zr looks for files
and directories as same as specified in ‘targets’.

Once extract() called, the SevenZipFIle object become exhausted and EOF state.
If you want to call read(), readall(), extract(), extractall() again,
you should call reset() before it.

CAUTION when specifying files and not specifying parent directory,
py7zr will fails with no such directory. When you want to extract file
‘somedir/somefile’ then pass a list: [‘somedirectory’, ‘somedir/somefile’]
as a target argument.

Please see ‘tests/test_basic.py: test_py7zr_extract_and_getnames()’ for
example code.

filter_pattern = re.compile(r'scripts.*')
with SevenZipFile('archive.7z', 'r') as zip:
 allfiles = zip.getnames()
 targets = [f if filter_pattern.match(f) for f in allfiles]
with SevenZipFile('archive.7z', 'r') as zip:
 zip.extract(targets=targets)

	
SevenZipFile.readall()

	Extract all members from the archive to memory and returns dictionary object.
Returned dictionary has a form of Dict[filename: str, BinaryIO: io.BytesIO object].
Once readall() called, the SevenZipFIle object become exhausted and EOF state.
If you want to call read(), readall(), extract(), extractall() again,
you should call reset() before it.
You can get extracted data from dictionary value as such

with SevenZipFile('archive.7z', 'r') as zip:
 for fname, bio in zip.readall().items():
 print(f'{fname}: {bio.read(10)}...')

	
SevenZipFile.read(targets=None)

	Extract specified list of target archived files to dictionary object.
‘targets’ is a list of archived files to be extracted. py7zr looks for files
and directories as same as specified in ‘targets’.
When targets is None, it behave as same as readall().
Once read() called, the SevenZipFIle object become exhausted and EOF state.
If you want to call read(), readall(), extract(), extractall() again,
you should call reset() before it.

filter_pattern = re.compile(r'scripts.*')
with SevenZipFile('archive.7z', 'r') as zip:
 allfiles = zip.getnames()
 targets = [f for f in allfiles if filter_pattern.match(f)]
with SevenZipFile('archive.7z', 'r') as zip:
 for fname, bio in zip.read(targets).items():
 print(f'{fname}: {bio.read(10)}...')

	
SevenZipFile.list()

	Return a List[FileInfo].

	
SevenZipFile.archiveinfo()

	Return a ArchiveInfo object.

	
SevenZipFile.test()

	Read all the archive file and check a packed CRC.
Return True if CRC check passed, and return False when detect defeat,
or return None when the archive don’t have a CRC record.

	
SevenZipFile.testzip()

	Read all the files in the archive and check their CRCs.
Return the name of the first bad file, or else return None.
When the archive don’t have a CRC record, it return None.

	
SevenZipFile.write(filename, arcname=None)

	Write the file named filename to the archive, giving it the archive name
arcname (by default, this will be the same as filename, but without a drive
letter and with leading path separators removed).
The archive must be open with mode 'w'

	
SevenZipFile.writeall(filename, arcname=None)

	Write the directory and its sub items recursively into the archive, giving
the archive name arcname (by default, this will be the same as filename,
but without a drive letter and with leading path seaprator removed).

If you want to store directories and files, putting arcname is good idea.
When filename is ‘C:/a/b/c’ and arcname is ‘c’, with a file exist as ‘C:/a/b/c/d.txt’,
then archive listed as [‘c’, ‘c/d.txt’], the former as directory.

	
SevenZipFile.set_encrypted_header(mode)

	Set header encryption mode. When encrypt header, set mode to True, otherwise False.
Default is False.

	
SevenZipFile.set_encoded_header_mode(mode)

	Set header encode mode. When encode header data, set mode to True, otherwise False.
Default is True.

Compression Methods

‘py7zr’ supports algorithms and filters which lzma module [https://docs.python.org/3/library/lzma.html] and liblzma [https://tukaani.org/xz/] support.
It also support BZip2 and Deflate that are implemented in python core libraries,
and ZStandard with third party libraries.
py7zr, python3 core lzma module [https://docs.python.org/3/library/lzma.html] and liblzma do not support some algorithms
such as PPMd, BCJ2 and Deflate64.

Here is a table of algorithms.

	#

	Category

	Algorithm

	Note

	1

	
	Compression

	Decompression

	LZMA2

	default (LZMA2+BCJ)

	2

	LZMA

	

	3

	Bzip2

	

	4

	Deflate

	

	5

	COPY

	

	6

	PPMd

	depend on pyppmd

	7

	ZStandard

	depend on pyzstd

	8

	Brotli

	depend on brotli,brotliCFFI

	9

	
	Filter

	BCJ

	
	(X86, ARM, PPC, ARMT, SPARC,
	IA64) depend on bcj-cffi

	10

	Delta

	

	11

	
	Encryption

	Decryption

	7zAES

	depend on pycryptodomex

	12

	
	Unsupported

	BCJ2

	

	13

	Deflate64

	

	A feature handling symbolic link is basically compatible with ‘p7zip’ implementation,
but not work with original 7-zip because the original does not implement the feature.

Possible filters value

Here is a list of examples for possible filters values.
You can use it when creating SevenZipFile object.

from py7zr import FILTER_LZMA, SevenZipFile

filters = [{'id': FILTER_LZMA}]
archive = SevenZipFile('target.7z', mode='w', filters=filters)

	LZMA2 + Delta
	[{'id': FILTER_DELTA}, {'id': FILTER_LZMA2, 'preset': PRESET_DEFAULT}]

	LZMA2 + BCJ
	[{'id': FILTER_X86}, {'id': FILTER_LZMA2, 'preset': PRESET_DEFAULT}]

	LZMA2 + ARM
	[{'id': FILTER_ARM}, {'id': FILTER_LZMA2, 'preset': PRESET_DEFAULT}]

	LZMA + BCJ
	[{'id': FILTER_X86}, {'id': FILTER_LZMA}]

	LZMA2
	[{'id': FILTER_LZMA2, 'preset': PRESET_DEFAULT}]

	LZMA
	[{'id': FILTER_LZMA}]

	BZip2
	[{'id': FILTER_BZIP2}]

	Deflate
	[{'id': FILTER_DEFLATE}]

	ZStandard
	[{'id': FILTER_ZSTD, 'level': 3}]

	PPMd
	[{'id': FILTER_PPMD, 'order': 6, 'mem': 24}]

[{'id': FILTER_PPMD, 'order': 6, 'mem': "16m"}]

	Brolti
	[{'id': FILTER_BROTLI, 'level': 11}]

	7zAES + LZMA2 + Delta
	[{'id': FILTER_DELTA}, {'id': FILTER_LZMA2, 'preset': PRESET_DEFAULT}, {'id': FILTER_CRYPTO_AES256_SHA256}]

	7zAES + LZMA2 + BCJ
	[{'id': FILTER_X86}, {'id': FILTER_LZMA2, 'preset': PRESET_DEFAULT}, {'id': FILTER_CRYPTO_AES256_SHA256}]

	7zAES + LZMA
	[{'id': FILTER_LZMA}, {'id': FILTER_CRYPTO_AES256_SHA256}]

	7zAES + Deflate
	[{'id': FILTER_DEFLATE}, {'id': FILTER_CRYPTO_AES256_SHA256}]

	7zAES + BZip2
	[{'id': FILTER_BZIP2}, {'id': FILTER_CRYPTO_AES256_SHA256}]

	7zAES + ZStandard
	[{'id': FILTER_ZSTD}, {'id': FILTER_CRYPTO_AES256_SHA256}]

Footnotes

Contributor guide

Development environment

If you’re reading this, you’re probably interested in contributing to py7zr.
Thank you very much! The purpose of this guide is to get you to the point
where you can make improvements to the py7zr and share them with the rest of the team.

Setup Python

The py7zr is written in the Python programming language. Python installation for
various platforms with various ways. You need to install Python environment which
support pip command. Venv/Virtualenv is recommended for development.

We have a test suite with python 3.6, 3.7, 3.8 and pypy3.
If you want to run all the test with these versions and variant on your local,
you should install these versions. You can run test with CI environment on
Github actions.

Get Early Feedback

If you are contributing, do not feel the need to sit on your contribution
until it is perfectly polished and complete. It helps everyone involved
for you to seek feedback as early as you possibly can.
Submitting an early, unfinished version of your contribution
for feedback in no way prejudices your chances of getting that contribution accepted,
and can save you from putting a lot of work into a contribution that is not suitable for the project.

Code Contributions

Steps submitting code

When contributing code, you’ll want to follow this checklist:

	Fork the repository on GitHub.

	Run the tox tests to confirm they all pass on your system. If they don’t, you’ll need
to investigate why they fail. If you’re unable to diagnose this yourself,
raise it as a bug report.

	Write tests that demonstrate your bug or feature. Ensure that they fail.

	Make your change.

	Run the entire test suite again using tox, confirming that all tests pass
including the ones you just added.

	Send a GitHub Pull Request to the main repository’s master branch.
GitHub Pull Requests are the expected method of code collaboration on this project.

Code review

Contribution will not be merged until they have been code reviewed. There are limited
reviewer in the team, reviews from other contributors are also welcome.
You should implemented a review feedback unless you strongly object to it.

Code style

The py7zr uses the PEP8 code style. In addition to the standard PEP8, we have an extended
guidelines

	line length should not exceed 125 charactors.

	It also use MyPy static type check enforcement.

Profiling

CPU and memory profiling

Run-time memory errors and leaks are among the most difficult
errors to locate and the most important to correct.
Memory profiling is used to detect memory leaks or unwanted memory usages.

It is also a difficult work to improve performance. CPU profiling
help us to understand where is a hot spot of execution of a program.

mprofile

mprofile is a tool to do a memory profiling task for python.
py7zr project has a test configuration for the memory profiling.

env PYTEST_ADDOPTS=--run-slow tox -e mprof

This example run all the test cases includes conditions
which requires running duration.

After running test, you can find a chart in project root.
memory-profiile.png and raw data as mprofile_yyyyMMddhhmmss.dat

Class and module design

The py7zr take class design that categorized into several sub modules
to reflect its role.

The main class is py7zr.SevenZipFile() class which provide API
for library users. The main internal classes are in the submodule
py7zr.archiveinfo, which takes class structure as same as .7z file
format structure.

Another important submodule is py7zr.compressor module that hold
all related compression and encryption proxy classes for corresponding
libraries to convert various interfaces into common ISevenZipCompressor()
and ISevenZipDecompressor() interface.

All UI related classes and functions are separated from core modules.
cli submodule is a place for command line functions and pretty printings.

[image: digraph "packages" { charset="utf-8" rankdir=BT "0" [label="py7zr", shape="box"]; "1" [label="py7zr.__main__", shape="box"]; "2" [label="py7zr.archiveinfo", shape="box"]; "3" [label="py7zr.callbacks", shape="box"]; "4" [label="py7zr.cli", shape="box"]; "5" [label="py7zr.compressor", shape="box"]; "6" [label="py7zr.exceptions", shape="box"]; "7" [label="py7zr.helpers", shape="box"]; "8" [label="py7zr.properties", shape="box"]; "9" [label="py7zr.py7zr", shape="box"]; "10" [label="py7zr.win32compat", shape="box"]; "0" -> "6" [arrowhead="open", arrowtail="none"]; "0" -> "8" [arrowhead="open", arrowtail="none"]; "0" -> "9" [arrowhead="open", arrowtail="none"]; "2" -> "5" [arrowhead="open", arrowtail="none"]; "2" -> "6" [arrowhead="open", arrowtail="none"]; "2" -> "7" [arrowhead="open", arrowtail="none"]; "2" -> "8" [arrowhead="open", arrowtail="none"]; "4" -> "3" [arrowhead="open", arrowtail="none"]; "4" -> "5" [arrowhead="open", arrowtail="none"]; "4" -> "7" [arrowhead="open", arrowtail="none"]; "4" -> "8" [arrowhead="open", arrowtail="none"]; "4" -> "9" [arrowhead="open", arrowtail="none"]; "5" -> "6" [arrowhead="open", arrowtail="none"]; "5" -> "7" [arrowhead="open", arrowtail="none"]; "5" -> "8" [arrowhead="open", arrowtail="none"]; "9" -> "2" [arrowhead="open", arrowtail="none"]; "9" -> "3" [arrowhead="open", arrowtail="none"]; "9" -> "5" [arrowhead="open", arrowtail="none"]; "9" -> "6" [arrowhead="open", arrowtail="none"]; "9" -> "7" [arrowhead="open", arrowtail="none"]; "9" -> "8" [arrowhead="open", arrowtail="none"]; }]

Here is a whole classes diagram. There are part by part descriptions at Next sections.

[image: digraph "classes" { charset="utf-8" rankdir=BT "0" [label="{AESCompressor|AES_CBC_BLOCKSIZE : int\lbuf\lcipher\lcycles : int\lflushed : bool\liv\lmethod\lsalt : bytes\l|compress(data)\lencode_filter_properties()\lflush()\l}", shape="record"]; "1" [label="{AESDecompressor|buf\lcipher\l|decompress(data)\l}", shape="record"]; "2" [label="{ArchiveCallback|\l|}", shape="record"]; "4" [label="{ArchiveFile|archivable\lcompressed\lcrc32\lemptystream\lfilename\lfolder\lid\lis_directory\lis_junction\lis_socket\lis_symlink\llastwritetime\lorigin\lposix_mode\lreadonly\lst_fmt\luncompressed\l|file_properties()\l}", shape="record"]; "5" [label="{ArchiveFileList|files_list : list\lindex : int\loffset : int\l|append(file_info)\l}", shape="record"]; "7" [label="{ArchiveInfo|blocks\lfilename\lheader_size\lmethod_names\lsize\lsolid\luncompressed\l|}", shape="record"]; "13" [label="{Buffer|view : memoryview\l|add(data)\lget()\lreset()\lset(data)\l}", shape="record"]; "16" [label="{Callback|\l|report_end(processing_file_path, wrote_bytes)\lreport_postprocess()\lreport_start(processing_file_path, processing_bytes)\lreport_start_preparation()\lreport_warning(message)\l}", shape="record"]; "19" [label="{CompressionMethod|ARM\lARMT\lBCJ\lBCJ_ARM\lBCJ_ARMT\lBCJ_IA64\lBCJ_PPC\lBCJ_SPARC\lCOPY\lCRYPT_AES256_SHA256\lCRYPT_RAR29AES\lCRYPT_ZIPCRYPT\lDELTA\lIA64\lLZMA\lLZMA2\lMISC_BROTLI\lMISC_BZIP2\lMISC_DEFLATE\lMISC_DEFLATE64\lMISC_LIZARD\lMISC_LZ4\lMISC_LZH\lMISC_LZS\lMISC_Z\lMISC_ZIP\lMISC_ZSTD\lNSIS_BZIP2\lNSIS_DEFLATE\lP7Z_BCJ\lP7Z_BCJ2\lPPC\lPPMD\lSPARC\lSWAP2\lSWAP4\l|}", shape="record"]; "20" [label="{CompressorChain|digest : int\lfilters : list\lmethods_map\lpacksize : int\lunpacksizes\l|add_filter(filter)\lcompress(data)\lflush()\l}", shape="record"]; "22" [label="{CopyCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "23" [label="{CopyDecompressor|\l|decompress(data)\l}", shape="record"]; "26" [label="{DecompressorChain|filters : list\l|add_filter(filter)\ldecompress(data, max_length)\l}", shape="record"]; "27" [label="{DeflateCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "28" [label="{DeflateDecompressor|flushed : bool\l|decompress(data)\l}", shape="record"]; "30" [label="{ExtractCallback|\l|}", shape="record"]; "31" [label="{FileInfo|archivable\lcompressed\lcrc32\lcreationtime\lfilename\lis_directory\luncompressed\l|}", shape="record"]; "32" [label="{FilesInfo|emptyfiles : list\lfiles : list\l|retrieve(cls, file)\lwrite(file)\l}", shape="record"]; "33" [label="{Folder|bindpairs : list\lcoders : list\lcompressor : NoneType\lcrc : int, NoneType\ldecompressor : NoneType\ldigestdefined : bool\lfiles : NoneType\lpacked_indices : list\lsolid : bool\lunpacksizes : list\l|get_compressor()\lget_decompressor(packsize, reset)\lget_unpack_size()\lis_simple(coder)\lprepare_coderinfo(filters)\lretrieve(cls, file)\lwrite(file)\l}", shape="record"]; "34" [label="{Header|files_info : NoneType\lmain_streams : NoneType\lsize : int\lsolid : bool\l|build_header(folders)\lretrieve(cls, fp, buffer, start_pos)\lwrite(file, afterheader, encoded, encrypted)\l}", shape="record"]; "35" [label="{HeaderStreamsInfo|packinfo\lunpackinfo\l|write(file)\l}", shape="record"]; "37" [label="{ISevenZipCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "38" [label="{ISevenZipDecompressor|\l|decompress(data)\l}", shape="record"]; "41" [label="{MemIO|parent\l|close()\lflush()\lmkdir(parents, exist_ok)\lopen(mode)\lread(length)\lseek(position)\lwrite(data)\l}", shape="record"]; "44" [label="{NullIO|parent\l|close()\lflush()\lmkdir()\lopen(mode)\lread(length)\lwrite(data)\l}", shape="record"]; "45" [label="{PackInfo|crcs : list\lenable_digests : bool\lnumstreams : int\lpackpos : int\lpackpositions\lpacksizes : list\l|retrieve(cls, file)\lwrite(file)\l}", shape="record"]; "53" [label="{SevenZipCompressor|cchain\lcoders : list\ldigest\lfilters : NoneType, list\lmethods_map\lpacksize\lunpacksizes\l|compress(data)\lflush()\l}", shape="record"]; "54" [label="{SevenZipDecompressor|cchain\lconsumed : int\lcrc\ldigest : NoneType, int\linput_size\lmethods_map\lunpacksizes\l|check_crc()\ldecompress(data, max_length)\l}", shape="record"]; "55" [label="{SevenZipFile|afterheader\ldereference : bool\lencoded_header_mode : bool\lfilename : str\lfiles : NoneType\lfolder : NoneType\lfp\lheader : NoneType\lmode : str\lpassword : NoneType\lpassword_protected : bool\lq\lreporterd : NoneType\lsig_header : NoneType\lworker : NoneType\l|archiveinfo()\lclose()\lextract(path, targets)\lextractall(path, callback)\lgetnames()\llist()\lread(targets)\lreadall()\lreporter(callback)\lreset()\lset_encoded_header_mode(mode)\ltest()\ltestzip()\lwrite(file, arcname)\lwriteall(path, arcname)\l}", shape="record"]; "56" [label="{SignatureHeader|nextheadercrc : int\lnextheaderofs : int\lnextheadersize : int\lstartheadercrc : int\lversion : tuple\l|calccrc(length, header_crc)\lretrieve(cls, file)\lwrite(file)\l}", shape="record"]; "57" [label="{StreamsInfo|packinfo : NoneType\lsubstreamsinfo : NoneType\lunpackinfo : NoneType\l|read(file)\lretrieve(cls, file)\lwrite(file)\l}", shape="record"]; "58" [label="{SubstreamsInfo|digests : list\ldigestsdefined : list\lnum_unpackstreams_folders : list\lunpacksizes : list, NoneType\l|retrieve(cls, file, numfolders, folders)\lwrite(file, numfolders)\l}", shape="record"]; "59" [label="{SupportedMethods|formats : list\lmethods : list\l|get_coder(cls, filter)\lget_filter_id(cls, coder)\lget_method_id(cls, filter)\lis_compressor(cls, filter)\lis_crypto(cls, filter)\lis_native_coder(cls, coder)\lis_native_filter(cls, filter)\l}", shape="record"]; "64" [label="{UnpackInfo|datastreamidx : NoneType\lfolders : list\lnumfolders : NoneType, int\l|retrieve(cls, file)\lwrite(file)\l}", shape="record"]; "66" [label="{Worker|files\lheader\lsrc_start\ltarget_filepath : dict\l|archive(fp, folder, deref)\ldecompress(fp, folder, fq, size, compressed_size, src_end)\lextract(fp, parallel, q)\lextract_single(fp, files, src_start, src_end, q)\lregister_filelike(id, fileish)\l}", shape="record"]; "67" [label="{ZstdCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "69" [label="{ZstdDecompressor|\l|decompress(data)\l}", shape="record"]; "0" -> "37" [arrowhead="empty", arrowtail="none"]; "1" -> "38" [arrowhead="empty", arrowtail="none"]; "2" -> "16" [arrowhead="empty", arrowtail="none"]; "22" -> "37" [arrowhead="empty", arrowtail="none"]; "23" -> "38" [arrowhead="empty", arrowtail="none"]; "27" -> "37" [arrowhead="empty", arrowtail="none"]; "28" -> "38" [arrowhead="empty", arrowtail="none"]; "30" -> "16" [arrowhead="empty", arrowtail="none"]; "35" -> "57" [arrowhead="empty", arrowtail="none"]; "37" -> "20" [arrowhead="empty", arrowtail="none"]; "38" -> "26" [arrowhead="empty", arrowtail="none"]; "67" -> "37" [arrowhead="empty", arrowtail="none"]; "69" -> "38" [arrowhead="empty", arrowtail="none"]; "5" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="files", style="solid"]; "5" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="files", style="solid"]; "13" -> "0" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="buf", style="solid"]; "13" -> "1" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="buf", style="solid"]; "20" -> "53" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="cchain", style="solid"]; "26" -> "54" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="cchain", style="solid"]; "32" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="files_info", style="solid"]; "32" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="files_info", style="solid"]; "33" -> "64" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="folders", style="solid"]; "34" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="header", style="solid"]; "34" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="header", style="solid"]; "45" -> "35" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="packinfo", style="solid"]; "45" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="packinfo", style="solid"]; "45" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="packinfo", style="solid"]; "53" -> "33" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="compressor", style="solid"]; "54" -> "33" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="decompressor", style="solid"]; "56" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="sig_header", style="solid"]; "56" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="sig_header", style="solid"]; "57" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="additional_streams", style="solid"]; "57" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="main_streams", style="solid"]; "57" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="main_streams", style="solid"]; "58" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="substreamsinfo", style="solid"]; "58" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="substreamsinfo", style="solid"]; "64" -> "35" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="unpackinfo", style="solid"]; "64" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="unpackinfo", style="solid"]; "64" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="unpackinfo", style="solid"]; "66" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="worker", style="solid"]; }]

Header classes

Header related classes are in py7zr.archiveinfo submodule.

[image: digraph "classes" { charset="utf-8" rankdir=BT "33" [label="{Folder|bindpairs : list\lcoders : list\lcompressor : NoneType\lcrc : int, NoneType\ldecompressor : NoneType\ldigestdefined : bool\lfiles : NoneType\lpacked_indices : list\lsolid : bool\lunpacksizes : list\l|get_compressor()\lget_decompressor(packsize, reset)\lget_unpack_size()\lis_simple(coder)\lprepare_coderinfo(filters)\lretrieve(cls, file)\lwrite(file)\l}", shape="record"]; "34" [label="{Header|files_info : FilesInfo\lmain_streams : StreamsInfo\lsize : int\lsolid : bool\l|build_header(folders)\lretrieve(cls, fp, buffer, start_pos)\lwrite(file, afterheader, encoded, encrypted)\l}", shape="record"]; "35" [label="{HeaderStreamsInfo|packinfo : PackInfo\lunpackinfo : UnpackInfo\l|write(file)\l}", shape="record"]; "45" [label="{PackInfo|crcs : list\lenable_digests : bool\lnumstreams : int\lpackpos : int\lpackpositions\lpacksizes : list\l|retrieve(cls, file)\lwrite(file)\l}", shape="record"]; "55" [label="{SevenZipFile}", shape="record"]; "56" [label="{SignatureHeader|nextheadercrc : int\lnextheaderofs : int\lnextheadersize : int\lstartheadercrc : int\lversion : tuple\l|calccrc(length, header_crc)\lretrieve(cls, file)\lwrite(file)\l}", shape="record"]; "57" [label="{StreamsInfo|packinfo : NoneType\lsubstreamsinfo : NoneType\lunpackinfo : NoneType\l|read(file)\lretrieve(cls, file)\lwrite(file)\l}", shape="record"]; "58" [label="{SubstreamsInfo|digests : list\ldigestsdefined : list\lnum_unpackstreams_folders : list\lunpacksizes : list\l|retrieve(cls, file, numfolders, folders)\lwrite(file, numfolders)\l}", shape="record"]; "64" [label="{UnpackInfo|folders : list\lnumfolders : int\l|retrieve(cls, file)\lwrite(file)\l}", shape="record"]; "35" -> "57" [arrowhead="empty", arrowtail="none"]; "33" -> "64" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="folders", style="solid"]; "34" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="header", style="solid"]; "34" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="header", style="solid"]; "45" -> "35" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="packinfo", style="solid"]; "45" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="packinfo", style="solid"]; "45" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="packinfo", style="solid"]; "56" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="sig_header", style="solid"]; "56" -> "55" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="sig_header", style="solid"]; "57" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="additional_streams", style="solid"]; "57" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="main_streams", style="solid"]; "57" -> "34" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="main_streams", style="solid"]; "58" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="substreamsinfo", style="solid"]; "58" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="substreamsinfo", style="solid"]; "64" -> "35" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="unpackinfo", style="solid"]; "64" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="unpackinfo", style="solid"]; "64" -> "57" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="unpackinfo", style="solid"]; }]

Compressor classes

There are compression related classes in py7zr.compressor submodule.

[image: digraph "compressor_classes" { charset="utf-8" rankdir=BT "0" [label="{AESCompressor|cycles : int\liv\lmethod\lsalt : bytes\l|compress(data)\lencode_filter_properties()\lflush()\l}", shape="record"]; "1" [label="{AESDecompressor|\l|decompress(data)\l}", shape="record"]; "19" [label="{CompressionMethod|ARM\lARMT\lBCJ\lBCJ_ARM\lBCJ_ARMT\lBCJ_IA64\lBCJ_PPC\lBCJ_SPARC\lCOPY\lCRYPT_AES256_SHA256\lCRYPT_RAR29AES\lCRYPT_ZIPCRYPT\lDELTA\lIA64\lLZMA\lLZMA2\lMISC_BROTLI\lMISC_BZIP2\lMISC_DEFLATE\lMISC_DEFLATE64\lMISC_LIZARD\lMISC_LZ4\lMISC_LZH\lMISC_LZS\lMISC_Z\lMISC_ZIP\lMISC_ZSTD\lNSIS_BZIP2\lNSIS_DEFLATE\lP7Z_BCJ\lP7Z_BCJ2\lPPC\lPPMD\lSPARC\lSWAP2\lSWAP4\l|}", shape="record"]; "20" [label="{CompressorChain|digest : int\lfilters : list\lpacksize : int\lunpacksizes\l|add_filter(filter)\lcompress(data)\lflush()\l}", shape="record"]; "22" [label="{CopyCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "23" [label="{CopyDecompressor|\l|decompress(data)\l}", shape="record"]; "26" [label="{DecompressorChain|filters : list\l|add_filter(filter)\ldecompress(data, max_length)\l}", shape="record"]; "27" [label="{DeflateCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "28" [label="{DeflateDecompressor|\l|decompress(data)\l}", shape="record"]; "33" [label="{Folder}", shape="record"]; "37" [label="{ISevenZipCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "38" [label="{ISevenZipDecompressor|\l|decompress(data)\l}", shape="record"]; "53" [label="{SevenZipCompressor|cchain\lcoders : list\ldigest\lfilters : list\lpacksize\lunpacksizes\l|compress(data)\lflush()\l}", shape="record"]; "54" [label="{SevenZipDecompressor|cchain : list\lcrc\ldigest : int\lunpacksizes\l|check_crc()\ldecompress(data, max_length)\l}", shape="record"]; "59" [label="{SupportedMethods|formats : list\lmethods : list\l|get_coder(cls, filter)\lget_filter_id(cls, coder)\lget_method_id(cls, filter)\lis_compressor(cls, filter)\lis_crypto(cls, filter)\lis_native_coder(cls, coder)\lis_native_filter(cls, filter)\l}", shape="record"]; "67" [label="{ZstdCompressor|\l|compress(data)\lflush()\l}", shape="record"]; "69" [label="{ZstdDecompressor|\l|decompress(data)\l}", shape="record"]; "0" -> "37" [arrowhead="empty", arrowtail="none"]; "1" -> "38" [arrowhead="empty", arrowtail="none"]; "22" -> "37" [arrowhead="empty", arrowtail="none"]; "23" -> "38" [arrowhead="empty", arrowtail="none"]; "27" -> "37" [arrowhead="empty", arrowtail="none"]; "28" -> "38" [arrowhead="empty", arrowtail="none"]; "37" -> "20" [arrowhead="empty", arrowtail="none"]; "38" -> "26" [arrowhead="empty", arrowtail="none"]; "67" -> "37" [arrowhead="empty", arrowtail="none"]; "69" -> "38" [arrowhead="empty", arrowtail="none"]; "20" -> "53" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="cchain", style="solid"]; "26" -> "54" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="cchain", style="solid"]; "53" -> "33" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="compressor", style="solid"]; "54" -> "33" [arrowhead="diamond", arrowtail="none", fontcolor="green", label="decompressor", style="solid"]; }]

IO Abstraction classes

There are two IO abstraction classes to provide Mem API and check method.

[image: digraph "abstractio" { charset="utf-8" rankdir=BT "41" [label="{MemIO|\l|close()\lflush()\lmkdir(parents, exist_ok)\lopen(mode)\lread(length)\lseek(position)\lwrite(data)\l}", shape="record"]; "44" [label="{NullIO|\l|close()\lflush()\lmkdir()\lopen(mode)\lread(length)\lwrite(data)\l}", shape="record"]; }]

Callback classes

Here is a callback interface class. ExtractCallback class is a concrete class used in CLI.

[image: digraph "callbacks" { charset="utf-8" rankdir=BT "16" [label="{Callback|\l|report_end(processing_file_path, wrote_bytes)\lreport_postprocess()\lreport_start(processing_file_path, processing_bytes)\lreport_start_preparation()\lreport_warning(message)\l}", shape="record"]; "30" [label="{ExtractCallback|\l|}", shape="record"]; "30" -> "16" [arrowhead="empty", arrowtail="none"]; }]

Classes details

Here is a detailed interface documentation for implementer.

ArchiveFile Objects

Read 7zip format archives.

	
class py7zr.py7zr.ArchiveFile(id: int, file_info: Dict[str, Any])

	Represent each files metadata inside archive file.
It holds file properties; filename, permissions, and type whether
it is directory, link or normal file.

Instances of the ArchiveFile class are returned by iterating files_list of
SevenZipFile objects.
Each object stores information about a single member of the 7z archive. Most of users use extractall().

The class also hold an archive parameter where file is exist in
archive file folder(container).

	
property archivable: bool

	File has a Windows archive flag.

	
property compressed: Optional[int]

	Compressed size

	
property crc32: Optional[int]

	CRC of archived file(optional)

	
property emptystream: bool

	True if file is empty(0-byte file), otherwise False

	
file_properties() → Dict[str, Any]

	Return file properties as a hash object. Following keys are included: ‘readonly’, ‘is_directory’,
‘posix_mode’, ‘archivable’, ‘emptystream’, ‘filename’, ‘creationtime’, ‘lastaccesstime’,
‘lastwritetime’, ‘attributes’

	
property filename: str

	return filename of archive file.

	
has_strdata() → bool

	True if file content is set by writestr() method otherwise False.

	
property is_directory: bool

	True if file is a directory, otherwise False.

	
property is_junction: bool

	True if file is a junction/reparse point on windows, otherwise False.

	
property is_socket: bool

	True if file is a socket, otherwise False.

	
property is_symlink: bool

	True if file is a symbolic link, otherwise False.

	
property lastwritetime: Optional[ArchiveTimestamp]

	Return last written timestamp of a file.

	
property posix_mode: Optional[int]

	posix mode when a member has a unix extension property, or None
:return: Return file stat mode can be set by os.chmod()

	
property readonly: bool

	True if file is readonly, otherwise False.

	
property st_fmt: Optional[int]

	
	Returns:

	Return the portion of the file mode that describes the file type

	
class py7zr.py7zr.ArchiveFileList(offset: int = 0)

	Iteratable container of ArchiveFile.

	
class py7zr.py7zr.ArchiveInfo(filename: str, stat: stat_result, header_size: int, method_names: List[str], solid: bool, blocks: int, uncompressed: List[int])

	Hold archive information

	
class py7zr.py7zr.FileInfo(filename, compressed, uncompressed, archivable, is_directory, creationtime, crc32)

	Hold archived file information.

	
class py7zr.py7zr.SevenZipFile(file: Union[BinaryIO, str, Path], mode: str = 'r', *, filters: Optional[List[Dict[str, int]]] = None, dereference=False, password: Optional[str] = None, header_encryption: bool = False, blocksize: Optional[int] = None, mp: bool = False)

	The SevenZipFile Class provides an interface to 7z archives.

	
close()

	Flush all the data into archive and close it.
When close py7zr start reading target and writing actual archive file.

	
extractall(path: Optional[Any] = None, callback: Optional[ExtractCallback] = None) → None

	Extract all members from the archive to the current working
directory and set owner, modification time and permissions on
directories afterwards. path specifies a different directory
to extract to.

	
getnames() → List[str]

	Return the members of the archive as a list of their names. It has
the same order as the list returned by getmembers().

	
list() → List[FileInfo]

	Returns contents information

	
reset() → None

	When read mode, it reset file pointer, decompress worker and decompressor

	
write(file: Union[Path, str], arcname: Optional[str] = None)

	Write single target file into archive.

	
writeall(path: Union[Path, str], arcname: Optional[str] = None)

	Write files in target path into archive.

	
class py7zr.py7zr.Worker(files, src_start: int, header, mp=False)

	Extract worker class to invoke handler.

	
archive(fp: BinaryIO, files, folder, deref=False)

	Run archive task for specified 7zip folder.

	
decompress(fp: BinaryIO, folder, fq: IO[Any], size: int, compressed_size: Optional[int], src_end: int) → int

	decompressor wrapper called from extract method.

	Parameters:

	
	fp – archive source file pointer

	folder – Folder object that have decompressor object.

	fq – output file pathlib.Path

	size – uncompressed size of target file.

	compressed_size – compressed size of target file.

	src_end – end position of the folder

:returns None

	
extract(fp: BinaryIO, parallel: bool, skip_notarget=True, q=None) → None

	Extract worker method to handle 7zip folder and decompress each files.

	
extract_single(fp: Union[BinaryIO, str], files, src_start: int, src_end: int, q: Optional[Queue], exc_q: Optional[Queue] = None, skip_notarget=True) → None

	Single thread extractor that takes file lists in single 7zip folder.

	
register_filelike(id: int, fileish: Optional[Union[MemIO, Path]]) → None

	register file-ish to worker.

	
py7zr.py7zr.is_7zfile(file: Union[BinaryIO, str, Path]) → bool

	Quickly see if a file is a 7Z file by checking the magic number.
The file argument may be a filename or file-like object too.

	
py7zr.py7zr.pack_7zarchive(base_name, base_dir, owner=None, group=None, dry_run=None, logger=None)

	Function for registering with shutil.register_archive_format().

	
py7zr.py7zr.unpack_7zarchive(archive, path, extra=None)

	Function for registering with shutil.register_unpack_format().

archiveinfo module

	
class py7zr.archiveinfo.Bond(incoder, outcoder)

	Represent bindings between two methods.
bonds[i] = (incoder, outstream)
means
methods[i].stream[outstream] output data go to method[incoder].stream[0]

	
class py7zr.archiveinfo.FilesInfo

	holds file properties

	
class py7zr.archiveinfo.Folder

	a “Folder” represents a stream of compressed data.
coders: list of coder
num_coders: length of coders
coder: hash list
keys of coders: method, numinstreams, numoutstreams, properties
unpacksizes: uncompressed sizes of outstreams

	
class py7zr.archiveinfo.Header

	the archive header

	
class py7zr.archiveinfo.HeaderStreamsInfo

	Header version of StreamsInfo

	
class py7zr.archiveinfo.PackInfo

	information about packed streams

	
class py7zr.archiveinfo.SignatureHeader

	The SignatureHeader class hold information of a signature header of archive.

	
class py7zr.archiveinfo.StreamsInfo

	information about compressed streams

	
class py7zr.archiveinfo.SubstreamsInfo

	defines the substreams of a folder

	
class py7zr.archiveinfo.UnpackInfo

	combines multiple folders

	
class py7zr.archiveinfo.WriteWithCrc(fp: BinaryIO)

	Thin wrapper for file object to calculate crc32 when write called.

	
py7zr.archiveinfo.read_real_uint64(file: BinaryIO) → Tuple[int, bytes]

	read 8 bytes, return unpacked value as a little endian unsigned long long, and raw data.

	
py7zr.archiveinfo.read_uint32(file: BinaryIO) → Tuple[int, bytes]

	read 4 bytes, return unpacked value as a little endian unsigned long, and raw data.

	
py7zr.archiveinfo.read_uint64(file: BinaryIO) → int

	read UINT64, definition show in write_uint64()

	
py7zr.archiveinfo.read_utf16(file: BinaryIO) → str

	read a utf-16 string from file

	
py7zr.archiveinfo.write_real_uint64(file: BinaryIO, value: int)

	write 8 bytes, as an unsigned long long.

	
py7zr.archiveinfo.write_uint32(file: BinaryIO, value)

	write uint32 value in 4 bytes.

	
py7zr.archiveinfo.write_uint64(file: BinaryIO, value: int)

	UINT64 means real UINT64 encoded with the following scheme:

Size of encoding sequence depends from first byte:

First_Byte Extra_Bytes Value

(binary)

0xxxxxxx : (xxxxxxx)

10xxxxxx BYTE y[1] : (xxxxxx << (8 * 1)) + y

110xxxxx BYTE y[2] : (xxxxx << (8 * 2)) + y

…

1111110x BYTE y[6] : (x << (8 * 6)) + y

11111110 BYTE y[7] : y

11111111 BYTE y[8] : y

	
py7zr.archiveinfo.write_utf16(file: BinaryIO, val: str)

	write a utf-16 string to file

compressor module

	
class py7zr.compressor.AESCompressor(password: str, blocksize: Optional[int] = None)

	AES Compression(Encryption) class.
It accept pre-processing filter which may be a LZMA compression.

	
compress(data)

	Compression + AES encryption with 16byte alignment.

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.AESDecompressor(aes_properties: bytes, password: str, blocksize: Optional[int] = None)

	Decrypt data

	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.BCJDecoder(size: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.BCJEncoder

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.BcjArmDecoder(size: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.BcjArmEncoder

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.BcjArmtDecoder(size: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.BcjArmtEncoder

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.BcjPpcDecoder(size: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.BcjPpcEncoder

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.BcjSparcDecoder(size: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.BcjSparcEncoder

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.BrotliCompressor(level)

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush() → bytes

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.BrotliDecompressor(properties: bytes, block_size: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1)

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.CopyCompressor

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.CopyDecompressor

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.Deflate64Compressor

	

	
class py7zr.compressor.Deflate64Decompressor

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.DeflateCompressor

	
	
compress(data)

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.DeflateDecompressor

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.ISevenZipCompressor

	
	
abstract compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
abstract flush() → bytes

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.ISevenZipDecompressor

	
	
abstract decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.LZMA1Decompressor(filters, unpacksize)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.MethodsType(value)

	An enumeration.

	
class py7zr.compressor.PpmdCompressor(properties: bytes)

	Compress with PPMd compression algorithm

	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush()

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.PpmdDecompressor(properties: bytes, blocksize: Optional[int] = None)

	Decompress PPMd compressed data

	
decompress(data: Union[bytes, bytearray, memoryview], max_length=- 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

	
class py7zr.compressor.SevenZipCompressor(filters=None, password=None, blocksize: Optional[int] = None)

	Main compressor object to configured for each 7zip folder.

	
class py7zr.compressor.SevenZipDecompressor(coders: List[Dict[str, Any]], packsize: int, unpacksizes: List[int], crc: Optional[int], password: Optional[str] = None, blocksize: Optional[int] = None)

	Main decompressor object which is properly configured and bind to each 7zip folder.
because 7zip folder can have a custom compression method

	
class py7zr.compressor.SupportedMethods

	Hold list of methods.

	
class py7zr.compressor.ZstdCompressor(level: int)

	
	
compress(data: Union[bytes, bytearray, memoryview]) → bytes

	Compress data (interface)
:param data: input data
:return: output data

	
flush() → bytes

	Flush output buffer(interface)
:return: output data

	
class py7zr.compressor.ZstdDecompressor(properties: bytes, blocksize: int)

	
	
decompress(data: Union[bytes, bytearray, memoryview], max_length: int = - 1) → bytes

	Decompress data (interface)
:param data: input data
:param max_length: maximum length of output data when it can respect, otherwise ignore.
:return: output data

helpers module

	
class py7zr.helpers.ArchiveTimestamp

	Windows FILETIME timestamp.

	
as_datetime()

	Convert FILETIME to Python datetime object.

	
totimestamp() → float

	Convert 7z FILETIME to Python timestamp.

	
exception py7zr.helpers.BufferOverflow

	

	
class py7zr.helpers.LocalTimezone

	
	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
fromutc(dt)

	datetime in UTC -> datetime in local time.

	
tzname(dt)

	datetime -> string name of time zone.

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
class py7zr.helpers.MemIO(buf: BinaryIO)

	pathlib.Path-like IO class to write memory(io.Bytes)

	
class py7zr.helpers.NullIO

	pathlib.Path-like IO class of /dev/null

	
class py7zr.helpers.UTC

	
	
dst(dt)

	datetime -> DST offset as timedelta positive east of UTC.

	
tzname(dt)

	datetime -> string name of time zone.

	
utcoffset(dt)

	datetime -> timedelta showing offset from UTC, negative values indicating West of UTC

	
py7zr.helpers.calculate_crc32(data: bytes, value: int = 0, blocksize: int = 1048576) → int

	Calculate CRC32 of strings with arbitrary lengths.

	
py7zr.helpers.calculate_key(password: bytes, cycles: int, salt: bytes, digest: str) → bytes

	Calculate 7zip AES encryption key.
Concat values in order to reduce number of calls of Hash.update().

	
py7zr.helpers.filetime_to_dt(ft)

	Convert Windows NTFS file time into python datetime object.

	
py7zr.helpers.islink(path)

	Cross-platform islink implementation.
Supports Windows NT symbolic links and reparse points.

	
py7zr.helpers.readlink(path: Union[str, Path], *, dir_fd=None) → Union[str, Path]

	Cross-platform compat implementation of os.readlink and Path.readlink().
Supports Windows NT symbolic links and reparse points.
When called with path argument as pathlike(str), return result as a pathlike(str).
When called with Path object, return also Path object.
When called with path argument as bytes, return result as a bytes.

	
py7zr.helpers.remove_relative_path_marker(path: str) → str

	Removes ‘./’ from the beginning of a path-like string

.7z format specification

Abstract

7-zip archive is one of popular files compression and archive formats. There has been
no well-defined file format because there is no precise specification document in 20 years
from its birth, so it has been considered as an application proprietary format.

There are some independent implementation of utility to handle 7-zip archives,
precise documentation of specification is mandatory to keep compatibility and
interoperability among implementations.

This specification defines an archive file format of .7z archive.
A purpose of this document is to provide a concrete documentation
to archive an interoperability among implementations.

Copyright Notice

Copyright (C) 2020,2021 Hiroshi Miura

Introduction

Purpose

This specification is intended to define a cross-platform, interoperable file storage and
transfer format. The information here is meant to be a concise guide for those wishing
to implement libraries and utility to handle 7-zip archive files.

This documentations is NOT a specification of any existed utilities and libraries.
This documentation does not have some features which is implemented in an existed utility.
It is because this document purpose is to keep interoperability.

Intended audience

This specification is intended for use by implementors of software to compress files into 7-zip format and/or
decompress files from 7-zip format.

The text of the specification assumes a basic background in programming
at the level of bits and other primitive data representations.

Scope

“7-zip archive” is one of popular files compression and archive formats.
It is universally used to aggregate, compress, and encrypt files into a single
interoperable container. No specific use or application need is
defined by this format and no specific implementation guidance is
provided. This document provides details on the storage format for
creating 7-zip files. Information is provided on the records and
fields that describe what a .7z file is.

This specification does not provide technical specification of compression methods
such as LZMA, LZMA2, Delta, BCJ and every other methods.
It also does not provide technical specification of encryption and hash methods
such as AES and SHA256.

Trademarks

7-zip is a public-domain utility on Microsoft Windows platforms written by Igor Pavlov.
7-zip archive file format was originally produced and defined by 7-zip utility.
p7zip is a cross-platform utility to handle 7zip archive file, which is a port of 7-zip to posix.
py7zr is a library and utility written with pure python3 to handle 7zip archive,
that is distributed under GNU Lessaer General Public License version 2.1 and later.
xzutils is an file compression/decompression utility.
liblzma is a library to provide LZMA and LZMA2 compression algorithm provided by xzutils project.
Python is one of popular computer language and running platform copyrighted and licensed by Python Foundation.
Python 3 provide lzma API deppend on liblzma.

Motivation

There are several file archive format and utilities. Many of them are born as proprietary format
of archive utility software, because of its nature, only standardized formats are now alived
as portable, stable for long time and freely usable specification.
PKWare ZIP, GNU Tar and GZip are examples for it.
Since 7-zip, its format and algorithm LZMA/LZMA2 are born as public-domain in 1999,
it has been known as one of long lived file format.

There are two effort to make .7z archives as well-documented, portable, and long life.
One is a documentation project here, and other is a software development project
to be compatible with original 7zip and p7zip utility such as py7zr.

Notations

	Use of the term SHALL indicates a required element.

	MAY NOT or SHALL NOT indicates an element is prohibited from use.

	SHOULD indicates a RECOMMENDED element.

	SHOULD NOT indicates an element NOT RECOMMENDED for use.

	MAY indicates an OPTIONAL element.

Data Representations

This chapter describes basic data representations used in 7-zip file.

BYTE

BYTE is a basic data type to store a char, Property ID or bitfield.

BYTEARRAY

BYTEARRAY is a sequence of BYTE. Its length SHALL be defined in another place.

String

There are two type of string data is used in 7-zip archive format.

	UTF-16-LE

	UTF-8

Integers

All integers that require more than one byte SHALL be in a little endian,
Least significant byte (LSB) comes first, then more significant bytes in
ascending order of significance (LSB MSB for two byte integers, B0 B1 B2 B3
for four bytes integers). The highest bit (value 128) of byte is number bit 7
and lowest bit (value 1) is number bit 0. Values are unsigned unless otherwise
noted.

	name

	size

	description

	UINT32

	4 bytes

	
integer at little endian

represent 0 to

4,294,967,295

(0xffffffff)

	UINT64

	8 bytes

	
integer at little endian

represent 0 to

18,446,744,073,709,551,615

(0xffffffffffffffff)

	NUMBER

	
1-9

bytes

	
variable length integer

value represent 0 to

18,446,744,073,709,551,615

(0xffffffffffffffff)

NUMBER SHALL be a integer value encoded with the following scheme.
in byte length between one byte to nine bytes.

Size of encoding sequence SHALL indicated at first byte.
The rest bits of first byte represent a bits from MSB of value.
Following bytes SHOULD be an integer as little endian.

	First_Byte
(binary)

	Extra_Bytes

	Value
(y: little endian integer)

	0xxxxxxx

	
	(0b0xxxxxxx)

	10xxxxxx

	BYTE y[1]

	(0b00xxxxxx << (8 * 1)) + y

	110xxxxx

	BYTE y[2]

	(0b000xxxxx << (8 * 2)) + y

	1110xxxx

	BYTE y[3]

	(0b0000xxxx << (8 * 3)) + y

	11110xxx

	BYTE y[4]

	(0b00000xxx << (8 * 4)) + y

	111110xx

	BYTE y[5]

	(0b000000xx << (8 * 5)) + y

	1111110x

	BYTE y[6]

	(0b0000000x << (8 * 6)) + y

	11111110

	BYTE y[7]

	y

	11111111

	BYTE y[8]

	y

BitField

BitField represent eight boolean values in single BYTE.

The bit field is defined which order is from MSB to LSB,
i.e. bit 7 (MSB) of first byte indicate a boolean for first stream, object or file,
bit 6 of first byte indicate a boolean for second stream, object or file, and
bit 0(LSB) of second byte indicate a boolean for 16th stream, object or file.

A length is vary according to a number of items to indicate.
If a number of items is not multiple of eight, rest of bitfield SHOULD zero.

BooleanList

BooleanList is a list of boolean bit arrays.
It has two field. First it defines an existence of boolean values for each items of number of files or
objects. Then boolean bit fields continues.
There is an extension of expression that indicate all boolean values is True, and
skip boolean bit fields.

alldefined, BYTEboolean, BitField

File format

7-zip archive file format SHALL consist of three part.
7-zip archive file SHALL start with signature header.
The data block SHOULD placed after the signature header.
The data block is shown as Packed Streams.

A header database SHOULD be placed after the data block.
The data block MAY be empty when no archived contents exists.
So Packed Streams is optional.

Since Header database CAN be encoded then it SHOULD place
after data block, that is Packed Streams for Headers.
When Header database is encoded, Header encode Information
SHALL placed instead of Header.

When Header database is placed as plain form,
Packed Streams for Headers SHALL NOT exist.

Signature HeaderPacked StreamsPacked Streams for HeaderHeader Encode InformationHeader

Signature Header

Signature header SHALL consist in 32 bytes.
Signature header SHALL start with Signature then continues
with archive version. Start Header SHALL follow after archive version.

SignatureMajor Version, BYTE, '0x00'Minor Version, BYTE, '0x04'Start Header CRC, UINT32Next Header Offset, UINT64Next Header Size, UINT64Next Header CRC, UINT32
It can be observed as follows when taken hex dump.

	address

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	A

	B

	C

	D

	E

	F

	0x0000

	Signature

	VN

	S.H. CRC

	N.H. offset

	0x0010

	offset(cont)

	N.H. size

	N.H. CRC

Signature

The first six bytes of a 7-zip file SHALL always contain b'7z\\xbc\\xaf\\x27\\x1c'.

Version Number

Version number SHALL consist with two bytes.
Major version is 0x00, and minor version is 0x04 for now.

Start Header CRC

It SHALL be stored in form of UINT32.
This CRC value SHALL be calculated from Next Header Offset, Next Header size and
Next Header CRC.

Next Header offset

Next header offset SHALL be an offset from end of signature header to header database.
Because signature header always consist with 32 bytes, the offset SHOULD be a value that
absolute position of header database in archive file - 32 bytes.
Next header offset SHALL be stored as UINT64.

Next Header size

Next header size SHALL be an size of a header database. Because a header database MAY be
encoded, Next header size SHALL consist of encoded(packed) size, not a raw size.
Next header size SHALL be stored as UINT64.

Next Header CRC

Next header CRC SHALL a CRC32 of Header that SHALL be stored in UINT32.

Property IDs

Information stored in Header SHALL be placed after Property ID.
For example, Header Info block start with 0x01, which means Header, then
continues data blocks, and 0x00, which is END, is placed at last.
This structure can be recursive but there is a rules where particular
ID can exist.

Property ID SHALL be a BYTE.

	ID

	Property

	0x00

	END

	0x01

	Header

	0x02

	ArchiveProperties

	0x03

	AdditionalStreamsInfo

	0x04

	MainStreamsInfo

	0x05

	FilesInfo

	0x06

	PackInfo

	0x07

	UnPackInfo

	0x08

	SubStreamsInfo

	0x09

	Size

	0x0A

	CRC

	0x0B

	Folder

	0x0C

	CodersUnPackSize

	0x0D

	NumUnPackStream

	0x0E

	EmptyStream

	0x0F

	EmptyFile

	0x10

	Anti

	0x11

	Name

	0x12

	CTime

	0x13

	ATime

	0x14

	MTime

	0x15

	Attributes

	0x16

	Comment

	0x17

	EncodedHeader

	0x18

	StartPos

	0x19

	Dummy

Header encode Information

Header encode Information is a Streams Information data for Header data as
encoded data followed after ID 0x17, EncodedHeader Property.

EncodedHeader, Property IDStreams Information for Header, StreamsInfo

Header

Header SHALL be consist of Main Streams.
It MAY be also consist of file list information.
It SHALL placed at a position where Start header offset pointed in archive file.
Header database MAY be encoded.

When raw header is located, it SHOULD become the following structure.
Raw header SHALL start with one byte ID 0x01.

Header, Property IDMainStreamsInfo, Property IDPack InformationCoders InformationSubstream InformationEND, Property IDFiles InformationEND, Property ID

Pack Information

Pack Information SHALL start with one byte of id value; 0x06.
Pack Information SHALL be const with Pack Position, Number of Pack Streams,
a list of sizes of Pack Streams and a list of CRCs of pack streams.
Pack position and Number of Pack streams SHALL be stored as
variable length NUMBER form.
Sizes of packed Streams SHALL stored as a list of NUMBER.

PackInfo, Property IDPack Position, NUMBERCount of Pack Streams, NUMBERSizes of Pack StreamsCRCs of Pack StreamsEND, Property ID

Pack Position

Pack Position SHALL indicate a position of encoded streams that value SHALL be
an offset from the end of signature header.
It MAY be a next position of end of signature header.

Count of Pack Streams

Count of Pack Streams SHALL indicate a number of encoded streams.
LZMA and LZMA2 SHOULD have a single (one) stream.
7-zip CAN have encoding methods which produce multiple encoded streams.
When there are multiple streams, a value of Number of Pack Streams SHALL
indicate it.

Sizes of Pack Streams

Sizes of Pack Streams SHOULD be omitted when Number of Pack Streams is zero.
This is an array of NUMBER values which length is as same as Count of Pack Streams.
Size SHALL be positive integer and SHALL stored in NUMBER.

Size, Property IDsize, NUMBER

CRCs of Pack Streams

When Count of Pack Streams is zero, then CRCs of Pack Streams SHALL not exist.
CRC CAN be exist and indicated as DigestDefined BooleanList.
CRC SHALL be CRC32 and stored in UINT32.

CRC, Property IDDigestDefined, BooleanListcrc, UINT32

Coders Information

Coders Information SHALL located after Main Streams Information.
It SHALL provide encoding and encryption filter parameters.
It MAY be a single coder or multiple coders defined.
It SHALL NOT be more than five coders. (Maximum four)

UnpackInfo, Property IDFolder, Property IDNumber of Folders, NUMBERNot Ext(0x00), BYTEFolderExt(0x01), BYTEData Stream Index, NUMBERCodersUnpackSize, Property IDUnpacksize, NUMBERUnpackDigest, Property IDUnpackDigest, UINT32END, Property ID
In default Folders information is placed inline, then External flag is 0x00.

UnpackSizes

UnpackSizes is a list of decompress sizes for each archived file data.
When extract data from the archive, it SHALL be distilled from unpack streams
and split chunk into defined sizes.

Filenames are defined in File Information block. An order of data chunks and
a order of filenames SHALL be same, except for filenames which is defined as
empty stream.

UnpackDigests

UnpackDigests is a list of CRC32 of decompress data digests for each folders.
When extract data from the archive, it CAN check an integrity of data.

It SHALL be a list of NUMBER and its length SHALL be as same as number of folders.
It MAY be skipped when Substreams Information defined.

Folders

Folder in 7-zip archive means a basic container unit for encoded data.
It brings encoded data. The data chunk Packed Streams is defined as
series of Folders.

Each Folder has coder information. CoderInfo is consist of flag,
number of streams and properties.

Flag indicate the coder is simple i.e. single input and single output,
or complex i.e. multiple input, multiple output.

When simple coder, number of streams is always one for input,
and one for output, so it SHALL be skipped.

Number of Coders, NUMBERCoder Property
Number of coder SHALL be a NUMBER integer number.
Coder Properties SHALL be a list of Coder Property with length SHALL be
as same as Number of coder.

Coder Property

Coder Property is defined with flag which indicate coder types.
According to flag that indicate coder is complex, the Coder Property
MAY have a number of input and output streams of coder.

Flag is defined in one byte as following bit definitions.

	bit 3-0: Codec ID size

	bit 4: Is complex codec

	bit 5: There are attributes

	bit 6-7: Reserved, it SHOULD always be zero.

Flag, BYTECoder ID, BYTEARRAYNumInStreams, NUMBERNumOutStreams, NUMBERProperty Size, NUMBERProperty, BYTEARRAYInput Index, NUMBEROutout Index, NUMBERPacked Stream Index, NUMBER

BindPairs

BindPairs describe connection among coders when coder produce multiple output
or required multiple input.

A coder property format is vary with flag.
Following pseudo code indicate how each parameter located for informative purpose.

if (Is Complex Coder)
 {
 NUMBER ``NumInStreams``;
 NUMBER ``NumOutStreams``;
 }
 if (There Are Attributes)
 {
 NUMBER ``PropertiesSize``
 BYTE ``Properties[PropertiesSize]``
 }
}
NumBindPairs : = ``NumOutStreamsTotal`` – 1;
for (``NumBindPairs``)
 {
 NUMBER ``InIndex``;
 NUMBER ``OutIndex``;
 }
NumPackedStreams : ``NumInStreamsTotal`` – ``NumBindPairs``;
 if (``NumPackedStreams`` > 1)
 for(``NumPackedStreams``)
 {
 NUMBER ``Index``;
 };

When using only simple codecs, which has one input stream and one output stream,
coder property become as simple as follows;

Flag, BYTECoder ID, BYTEARRAYProperty Size, NUMBERProperty, BYTEARRAY
Here is an example of bytes of coder property when specifying LZMA.

	b'\x23\x03\x01\x01\x05\x5D\x00\x10\x00\x00'

In this example, first byte 0x23 indicate that coder id size is three bytes, and
it is not complex codec and there is a codec property.
A coder ID is b'\x03\x01\x01' and property length is five and property is
b'\x5D\x00\x10\x00\x00'.

Codec IDs

Conformant implementations SHALL support mandatory codecs that are COPY, LZMA, LZMA2, BCJ, and Delta.
There are a variant of BCJ that are X86, PowerPC, SPARC, ARM, ARMTHUMB, and IA64.
Conformant implementations SHOULD also support optional codecs that are AES, BZIP2, DEFLATE, BCJ2, and PPMd.
Implementations MAY support additional codecs that are ZStandard, and LZ4.
It MAY also support proprietary codec such as DEFLATE64.

Conformant implementations SHALL accept these codec IDs and when it does not support it,
it SHOULD report it as not supported.

Here is a list of famous codec IDs.

	NAME

	ID

	Note

	COPY

	0x00

	

	DELTA

	0x03

	

	BCJ

	0x04

	

	LZMA

	0x030101

	

	P7Z_BCJ

	0x03030103

	

	P7Z_BCJ2

	0x0303011b

	[1] [2]

	BCJ_PPC

	0x03030205

	

	BCJ_IA64

	0x03030301

	

	BCJ_ARM

	0x03030501

	

	BCJ_ARMT

	0x03030701

	

	BCJ_SPARC

	0x03030805

	

	LZMA2

	0x21

	

	BZIP2

	0x040202

	

	DEFLATE

	0x040108

	

	DEFLATE64

	0x040109

	[1] [3]

	ZSTD

	0x04f71101

	

	BROTLI

	0x04f71102

	

	LZ4

	0x04f71104

	[1]

	LZS

	0x04f71105

	[1]

	LIZARD

	0x04f71106

	[1]

	AES

	0x06f10701

	

Footnotes

[1]
(1,2,3,4,5)
Py7zr does not support BCJ2, DEFLATE64, LZ4, LZS and LIZARD

[2]
There is no plan to support BCJ2 by py7zr since Python standard lzma module does not support.

[3]
DEFLATE64 is supported only for extraction.

Substreams Information

Substream Information is an optional field that indicate substreams from
each folder produces.

When the archive is not solid, there SHALL NOT be SubStreams information.
When SubStreams Information is omitted, extractor still know a unpack size information
as folder information.

Substreams Information hold an information about archived data blocks
as in extracted form. It SHALL exist that number of unpack streams,
size of each unpack streams, and CRC of each streams

SubStreamsInfo, Property IDNumUnpackStream, Property IDNumber of unpack streams, NUMBERSize, Property IDSize of unpack streams, NUMBERCRC, Property IDdigest, UINT32END, Property ID

Files Information

Files Information SHOULD hold a list of files, directories and symbolic links.
Its order SHALL be as same as order of streams defined in packed information.
A type of file is stored in Attribute field.

FileInfo, Property IDNumber of Files, NUMBEREmpty Stream, Property IDSize, NUMBERFlag of Empty Streams, BitFieldEmpty Files, Property IDSize, NUMBERFlag of Empty Files, BitFieldDummy, Property IDSize, NUMBER0x00Name, Property IDSize, NUMBERFileNamesExist, BooleanListNot External(0x00), BYTEFileName, UTF-16-LEExt(0x01), BYTEData Index, NUMBERMTime, Property IDSize, NUMBERTimeExist, BooleanListExternal, BYTE, 0x00FileTime, NUMBERExternal, BYTE, 0x01Data Index, NUMBERCTime, Property IDSize, NUMBERTimeExist, BooleanListExternal, BYTE, 0x00FileTime, NUMBERExternal, BYTE, 0x01Data Index, NUMBERATime, Property IDSize, NUMBERTimeExist, BooleanListExternal, BYTE, 0x00FileTime, NUMBERExternal, BYTE, 0x01Data Index, NUMBERAttribute, Property IDSize, NUMBERAttributeExist, BooleanListNot External(0x00), BYTEAttribute, UINT32Ext(0x01), BYTEData Index, NUMBEREND, Property ID

Size

Size field indicate a size of next data. For example, Name size means,
a size in byte from a start of FileNamesExist field and an end of file names.

Empty Streams

Empty streams has a number of emptystreams and a boolean list to indicate which
file entry does not have a packed stream.

Dummy

Dummy MAY be placed for alignment. When processing File Names, which is UTF-16-LE,
it is better to be aligned in word barrier.

FileName

FileNam SHALL be a wide character string encoded with UTF-16-LE and
follows wchar_t NULL character, i.e. 0x0000.

Path separator SHALL be normalized as ‘/’, which is as POSIX standard.
FileName SHOULD be relative path notation.

Attribute

Attribute is a UINT32 integer value. From bit 0 to 15 are as same as
Windows attributes. Bit 16 to 31 is used for storing unix attributes.
When file is a symbolic link, it SHOULD has an attribute that
UNIX_EXTENSION flag enabled, and link bit of unix attributes.

Attribute values

	ID/Value

	Description

	FILE_ATTRIBUTE_READONLY 1 (0x1)

	A file that is read-only.

	FILE_ATTRIBUTE_HIDDEN 2 (0x2)

	The file or directory is hidden.

	FILE_ATTRIBUTE_DIRECTORY 16 (0x10)

	It identifies a directory.

	FILE_ATTRIBUTE_ARCHIVE 32 (0x20)

	A file or directory that is an archive file or directory.

	FILE_ATTRIBUTE_REPARSE_POINT 1024 (0x400)

	file or directory that has an associated reparse point, or a file that is a symbolic link.

	bit 16-31

	UNIX file permissions and attributes. 16bit shift to left of permissions and attributes.

	UNIX_EXTENSION (0x8000)

	Indicate a unix permissions and file attributes are bundled when 1.

FileTime

FileTime are NUMBER values in 100-nanosecond intervals since 1601/01/01 (UTC)

File type and a way

Normal files

Normal files are stored with packed streams and ordinal file information.
Its contents are stored into packed stream.
It SHOULD have an attribute of Windows such as FILE_ATTRIBUTE_ARCHIVE.
It MAY also have an attribute of UNIX such as rw_r__r__ permissions.

Empty files

Empty files, which size is zero, SHALL be stored without packed stream,
and with flle information.
It SHOULD have an attribute of Windows such as FILE_ATTRIBUTE_ARCHIVE.
It MAY also have an attribute of UNIX such as rw_r__r__ permissions.

Directories

Directories are stored without packed streams. It have entries in file information.
It SHALL have an attribute which is FILE_ATTRIBUTE_DIRECTORY.
It MAY also have an attribute of UNIX such as rwxr_xr_x permissions.

Special Files

There is an extension to handle special files such as sockets, device files, and symbolic links.
A type of special files is indicated as file attribute.
Further attribute of special file is stored as a content.

Compliant client MAY skip record of special files on extraction.

Symbolic links

Symbolic links are stored as packed streams and file information.
Its target file path, in relative, are recorded into packed streams
in UTF-8 character encoding.
It SHALL have a UNIX attribute which is S_IFLNK.

REPARSE_POINT on Windows

Reparse point on windows SHOULD be stored with packed stream and file information.
Its target link path, in absolute, are recorded into packed stream
in UTF-8 character encoding.
It SHALL have an attribute which is FILE_ATTRIBUTE_REPARSE_POINT.

Appendix: BNF expression (Informative)

This clause shows extended BNF expression of 7-zip file format.

7-zip archive ::= SignatureHeader, [PackedStreams],
 [PackedStreamsForHeaders], Header | HeaderInfo
SignatureHeader ::= Signature, ArchiveVersion, StartHeader
Signature ::= ``b'7z\xBC\xAF\x27\x1C'``
ArchiveVersion ::= ``b'\x00\x04'``
StartHeader ::= StartHeaderCRC, NextHeaderOffset,
 NextHeaderSize, NextHeaderCRC
NextHeaderOffset ::= `UINT64`
NextHeaderSize ::= `UINT64`
NextHeaderCRC ::= `UINT32`
StreamsInfo ::= PackInfo, CodersInfo, SubStreamsInfo
PackInfo ::= `0x06`, PackPos, NumPackStreams,
 SizesOfPackStream, CRCsOfPackStreams
CodersInfo ::= `0x07`, FoldersInfo
Folders Information ::= 0x0B, NumFolders, FolderInfo,
 CoderUnpackSizes, UnpackDigests, 0x00
FoldersInfo ::= `0x0B`, NumFolders, (`0x00`, Folders) | (`0x01`, DataStreamIndex)
 [`0x0C`, UnPackSizes, [`0x0A`, UnpackDigests]], `0x00`
Folders ::= Folder{ Number of Folders }
UnpackSizes ::= UnPackSize { Sum of NumOutStreams for each Folders }
UnpackSize ::= `NUMBER`
UnpackDigests ::= CRC32 { Number of folders }
SubStreamsInfo ::= `0x08`, `0x0D`, NumUnPackStreamsInFolders{Num of Folders],
 `0x09`, UnPackSize, `0x0A`,
 Digests{Number of streams with unknown CRC}, 0x00
Folder ::= NumCoders, CoderData { NumCoders }
CoderData ::= CoderFlag, CoderID, NumCoderStreamInOut, Properties,
 BinPairs, PackedStreamIndex
CoderFlag ::= BYTE(bit 0:3 CodecIdSize, 4: Is Complex Coder,
 5: There Are Attributes, 6: Reserved, 7: 0)
CoderId ::= BYTE{CodecIdSize}
FilesInfo ::= `0x05`, NumFiles, FileInfo, [FileInfo]
FileInfo ::= NumFiles, [0x0E, bit array of IsEmptyStream],
 [`0x0F`, bit array of IsEmptyFile],
 [`0x11`, FileNames],
 [`0x12`, FileTime], [`0x13`, FileTime], [`0x14`, FileTime],
 [`0x15`, Attributes]
FileTime ::= (`0x00`, bit array of TimeDefined | 0x01),
 (`0x00`, list of Time | 0x01, DataIndex)
FileNames ::= (`0x00`, list of each filename | 0x01, DataIndex)
filename ::= Name, `0x0000`
Name ::= UTF16-LE Char, [Name]
Attributes ::= (`0x00`, bit array of AttributesAreDefined | `0x01`),
 (`0x00`, list of Attribute | `0x01`, DataIndex)

A Coder flag affect a following CoderData existence as following algorithm;

if (Is Complex Coder)
 {
 NUMBER ``NumInStreams``;
 NUMBER ``NumOutStreams``;
 }
 if (There Are Attributes)
 {
 NUMBER ``PropertiesSize``
 BYTE ``Properties[PropertiesSize]``
 }
}
NumBindPairs : = ``NumOutStreamsTotal`` – 1;
for (``NumBindPairs``)
 {
 NUMBER ``InIndex``;
 NUMBER ``OutIndex``;
 }
NumPackedStreams : ``NumInStreamsTotal`` – ``NumBindPairs``;
 if (``NumPackedStreams`` > 1)
 for(``NumPackedStreams``)
 {
 NUMBER ``Index``;
 };

Appendix: CRC algorithm (normative)

Chunk CRCs are calculated using standard CRC methods with pre and post conditioning,
as defined by ISO 3309 [ISO-3309] or ITU-T V.42 [ITU-T-V42]. The CRC polynomial employed is

x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

The 32-bit CRC register is initialized to all 1’s, and then the data from each byte
is processed from the least significant bit (1) to the most significant bit (128).
After all the data bytes are processed, the CRC register is inverted
(its ones complement is taken).
This value is transmitted (stored in the file) MSB first.
For the purpose of separating into bytes and ordering, the least significant bit of
the 32-bit CRC is defined to be the coefficient of the x31 term.

Practical calculation of the CRC always employs a precalculated table to greatly
accelerate the computation

Appendix: Rationale

Byte order

It has been asked why 7-zip uses little endian byte order. It is a historical reason,
that 7-zip was born as Microsoft Windows application in 1999, and its file format was
a windows application format, when only little endian was used on target platform.

CRC32

CRC32 is a checksum.

Encode

Encode in this document express compressed, encrypted and/or filter data. When encoding,
it should lead encoding metadata.

Extract

Extract in this document express decompress, decryption and/or filter data from archive.

UTF-16-LE

Unicode UTF-16 encoding uses 2 bytes or 4 bytes to represent Unicode characters.
Because it is not one byte ordering, we need to consider endian, byte order.
UTF-16-LE is a variant of UTF-16 definition which use Little-Endian for store data.

UTF-8

Unicode UTF-8 encoding uses a sequence of bytes, from 1 bytes to 4 bytes to represent
Unicode characters. ISO 10646 defines it as 1 byts to 8 bytes encoding, so compliant
implementation SHALL be able to handle 8bytes sequence and mark it as invalid.

Authors

py7zr is written and maintained by Hiroshi Miura <miurahr@linux.com>

Contributors, listed alphabetically, are:

	Alan Lee – Update documentation

	Alexander Kapshuna – Fix shutil integration (#353)

	@andrebrait – Fix exception for empty 7z file (#118)

	@amarcu5 – fix error when large compressed headers (#281)

	c.foster – Default exceptions to include the exception type

	chigusa – Fix UTF-16 path parsing for extraction (#391)

	@DoNCK – Fix extraction of hidden dot files(#448)

	Jasper Lievisse Adriaanse – Update document

	Joachim Bauch – pylzma orginator

	Kazuya Fujioka – Fix zero file problem

	Kyle Altendorf – Fix multithreading problem (#82)

	Martin Larralde – Fix writef method (#397)

	Megan Leet – Fix infinite loop when extraction (#354)

	@padremayi – Fix crash on wrong crationtime in archive (#275)

	@royopa – Fix typo (#108)

	
	Yamada – Deflate64 decompression (#399)

	@Zoynels – Mmeory IO API(#111, #119)

Glossary

	binary file
	A file object able to read and write
bytes-like objects.
Examples of binary files are files opened in binary mode ('rb',
'wb' or 'rb+'), sys.stdin.buffer,
sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

See also text file for a file object able to read and write
str objects.

	bytes-like object
	An object that supports the bufferobjects and can
export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many
common memoryview objects. Bytes-like objects can
be used for various operations that work with binary data; these include
compression, saving to a binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation
often refers to these as “read-write bytes-like objects”. Example
mutable buffer objects include bytearray and a
memoryview of a bytearray.
Other operations require the binary data to be stored in
immutable objects (“read-only bytes-like objects”); examples
of these include bytes and a memoryview
of a bytes object.

	contiguous
	A buffer is considered contiguous exactly if it is either
C-contiguous or Fortran contiguous. Zero-dimensional buffers are
C and Fortran contiguous. In one-dimensional arrays, the items
must be laid out in memory next to each other, in order of
increasing indexes starting from zero. In multidimensional
C-contiguous arrays, the last index varies the fastest when
visiting items in order of memory address. However, in
Fortran contiguous arrays, the first index varies the fastest.

	file object
	An object exposing a file-oriented API (with methods such as
read() or write()) to an underlying resource. Depending
on the way it was created, a file object can mediate access to a real
on-disk file or to another type of storage or communication device
(for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or
streams.

There are actually three categories of file objects: raw
binary files, buffered
binary files and text files.
Their interfaces are defined in the io module. The canonical
way to create a file object is by using the open() function.

	file-like object
	A synonym for file object.

	text file
	A file object able to read and write str objects.
Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically.
Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of
io.StringIO.

See also binary file for a file object able to read and write
bytes-like objects.

	path-like object
	An object representing a file system path. A path-like object is either
a str or bytes object representing a path, or an object
implementing the os.PathLike protocol. An object that supports
the os.PathLike protocol can be converted to a str or
bytes file system path by calling the os.fspath() function;
os.fsdecode() and os.fsencode() can be used to guarantee a
str or bytes result instead, respectively. Introduced
by PEP 519 [https://peps.python.org/pep-0519/].

Py7zr Changelog

All notable changes to this project will be documented in this file.

Unreleased [https://github.com/miurahr/py7zr/compare/v0.18.10...HEAD]

v0.18.10 [https://github.com/miurahr/py7zr/compare/v0.18.9...v0.18.10]

Fixed

	Actions: fix release script to produce wheel.
there is no wheel release for v0.18.5-v0.18.9

v0.18.9 [https://github.com/miurahr/py7zr/compare/v0.18.7...v0.18.9]

Fixed

	Closing a SevenZipFile opened for appending, without adding a new file, raises exception (#378, #395)

	Docs: fix URL link error (#450)

	Actions: fix document compilation by installing graphviz (#450)

	Docs: fix errors and warnings on documentation.

Changed

	Add changelog into Documentation (#450)

	Test on python 3.11-beta (#450)

	Bump Sphinx@5.0 for Documentation (#450)

	Docs: update configuration to ignore changelog links for link check

v0.18.7 [https://github.com/miurahr/py7zr/compare/v0.18.6...v0.18.7]

Fixed

	Extraction wrongly renames unix hidden dot files/directories (#448)

v0.18.6 [https://github.com/miurahr/py7zr/compare/v0.18.5...v0.18.6]

Fixed

	Decompression of some LZMA+BCJ archive may abort with gegmentation fault
because of a PyBCJ bug. Bump PyBCJ@0.6.0 that fixed it. (#447)

Removed

	Remove in-source BCJ filter pure python code.
Now it have a place in a PyBCJ project. (#447)

v0.18.5 [https://github.com/miurahr/py7zr/compare/v0.18.4...v0.18.5]

Fixed

	Limit memory consumption for extraction(#430,#434,#440)

	Pyproject.toml: setuptools_scm configuration(#438)

Changed

	Build package with pip wheel with python 3.9 on Ubuntu 20.04

	Check py3.8, 3.9 and 3.10 on Azure-Pipelines CI/CD.

v0.18.4 [https://github.com/miurahr/py7zr/compare/v0.18.3...v0.18.4]

Fixed

	Raise exception properly when threaded extraction(#431,#432)

	Actions: fix tox test(#433)

Changed

	Change pyproject.toml:license table to be text key and SPDX license name(#435, #436)

v0.18.3 [https://github.com/miurahr/py7zr/compare/v0.18.1...v0.18.3]

Fixed

	ppmd: send extra byte b”0” to pyppmd.Ppmd7Decompressor,
when input is exhausted, but it indicate needs_input.
This is a same behavior as p7zip decoder does. (#417)

	README: fix example code(#426)

Changed

	Bump PyPPMd@0.18.1 (#420,#427)

	pyproject.toml: Add project section(#428)

v0.18.1 [https://github.com/miurahr/py7zr/compare/v0.18.0...v0.18.1]

Changed

	Limit dependency pyppmd to v0.17.x

Fixed

	Fix mypy error with mypy 0.940(#421)

v0.18.0 [https://github.com/miurahr/py7zr/compare/v0.17.4...v0.18.0]

Added

	Support DEFLATE64 decompression(#399)

Fixed

	Docs: fix typo for readall method argument(#416)

Changed

	Get status down for PPMd compression/decompression(#418)
PPMd decompression has a bug easily to fail decompression.

v0.17.4 [https://github.com/miurahr/py7zr/compare/v0.17.3...v0.17.4]

Fixed

	When extracting and target archive compressed with unsupported LZMA2+BCJ2, py7zr raise unexpected exception. Fix to raise better exception message

Changed

	docs: Add explanation of empty file specification

v0.17.3 [https://github.com/miurahr/py7zr/compare/v0.17.2...v0.17.3]

Security

	Check against directory traversal attack by file pathes in archive (#406,#407)

v0.17.2 [https://github.com/miurahr/py7zr/compare/v0.17.1...v0.17.2]

Fixed

	writef method detect wrong size of data(#397)

Changed

	Improve callback object check and error message(#387)

v0.17.1 [https://github.com/miurahr/py7zr/compare/v0.17.0...v0.17.1]

Fixed

	Allow 7zAES+LZMA2+BCJ combination for compression(#392)

	Argument error when raising UnsupportedCompressionMethodError(#394)

	Detect memory leak in test and fix some leaks(#388)

	Fix filename and property decode in UTF-16(#391)

Changed

	Azure: use macos@10.15 for test(#389)

v0.17.0 [https://github.com/miurahr/py7zr/compare/v0.16.4...v0.17.0]

Fixed

	Extraction: overwrite a symbolic link sometimes failed(#383)

	Allow creation of archive without any write call(#369,#372)

	Type check configuration update (#384)

	Adjust for type check errors (#384)

v0.16.4 [https://github.com/miurahr/py7zr/compare/v0.16.3...v0.16.4]

Fixed

	Win32 file namespace convention doesn’t work on Cygwin(#380,#381)

	Win32 file namespace convention doesn’t work for network path(#380)

v0.16.3 [https://github.com/miurahr/py7zr/compare/v0.16.2...v0.16.3]

Fixed

	Reduce memory consumptions and fix memory_error on 32bit python (#370,#373,#374,#375)

Added

	Add CI test for python 3.10 (#371)

v0.16.2 [https://github.com/miurahr/py7zr/compare/v0.16.1...v0.16.2]

Added

	Bundle type hint data

	README: Add conda recipe(#342)

Changed

	Use PyBCJ instead of bcj-cffi.(#368)

	Docs: change recommended python versions

	CI: benchmark on python 3.10

	Test expectation for python 3.10 change

	Improve exceptions and error messages

	Docs: add description of ArchiveInfo class

	Docs: fix typo on shutil integration(#353)

	Bump pyzstd@0.15.0

	Bump pyppmd@0.17.0

Fixed

	Docs: specification error of signature header data types.

	Fix infinite loop in extract(#354)

v0.16.1 [https://github.com/miurahr/py7zr/compare/v0.16.0...v0.16.1]

Added

	type hint for mypy

v0.16.0 [https://github.com/miurahr/py7zr/compare/v0.15.2...v0.16.0]

Added

	Add Brotli compression.

	CI: Test on AArch64.

Changed

	CLI: support multi-volume archive without making temporary file(#311)

	Filter parameter: PPMd: mem is now accept int or “<val>{m|k|b}” as same as 7-zip command line option.
int value is recognized as “1 << val” ie. 24 means 4MB.

	Dependency: PyPPMd v0.14.0+

	Dependency PyCryptodome to PyCryptodomex
that changes package name from PyCrypto to PyCryptodome(#334)

v0.15.2 [https://github.com/miurahr/py7zr/compare/v0.15.1...v0.15.2]

Added

	CLI: create sub-command(c) has -P or –password option.(#332)

Fixed

	Fix not to produce directory when memory extraction mode.(#323)

Changed

	Use PyPPMd v0.12.1 or later for ppmd compression instead of ppmd-cffi(#322)

	Add minimum version requirement for PyCryptodome (#329)

	Bump setuptools_scm @6.0.1

v0.15.1 [https://github.com/miurahr/py7zr/compare/v0.15.0...v0.15.1]

Changed

	Update release automation script.

	Bump ppmd-cffi and bcj-cffi versions(#320)

v0.15.0 [https://github.com/miurahr/py7zr/compare/v0.14.1...v0.15.0]

Added

	Add option to specify multiprocessing instead of multi-threading. (#306)

Changed

	Change Property Borg class to constant class(#319)

	Reformat whole code with black.

	Merge pyzstdfilter into compressor.py.

	Lint codes by flake8/black.

Fixed

	README: description of dependencies.

	ZStandard decompression on PyPy3

v0.14.1 [https://github.com/miurahr/py7zr/compare/v0.14.0...v0.14.1]

Fixed

	Fix of empty file archive(#305,#310)

v0.14.0 [https://github.com/miurahr/py7zr/compare/v0.13.0...v0.14.0]

Added

	Introduce writed() method that accept dict[name, BinaryIO](#302)

Changed

	READ_BLOCKSIZE configurable on constructor(#307)

	Use pyzstd for zstandard algorithm on CPython(#304)

	Use bcj-cffi library for lzma+bcj performance(#303)

	CLI: Fix getting module_name on 3.6.13(#308)

v0.13.0 [https://github.com/miurahr/py7zr/compare/v0.12.0...v0.13.0]

Added

	Add writestr() and writef() methods in SevenZipFile class.(#290,#293)

	Add benchmark tests for compression algorithms(#295)

	Track benchmark results on Github issue(#296)

Changed

	Refactoring BCF Filter classes, and move to individual module.(#292)

v0.12.0 [https://github.com/miurahr/py7zr/compare/v0.11.3...v0.12.0]

Changed

	PPMd and ZStandard is now one of default algorithms(#289)

	Increment copyright year

Fixed

	Crash when append files to an empty files archive(#286)

v0.11.3 [https://github.com/miurahr/py7zr/compare/v0.11.1...v0.11.3]

Fixed

	Fix test failure when running on pypi source(#279)

Security

	Drop issue_218.7z test data wihch is reported a blackmoon trojan(#285)

v0.11.1 [https://github.com/miurahr/py7zr/compare/v0.11.0...v0.11.1]

Changed

	Improve BCJ filter performance with LZMA1, ZStd compressions.

Fixed

	Fix to allow writing encrypted header(#280)

	Avoid crash when creationtime is wrong or Unix epoch. (#275,#276)

v0.11.0 [https://github.com/miurahr/py7zr/compare/v0.10.1...v0.11.0]

Changed

	PPMd: Use stream encoder/decoder instead of buffered one.

	PPMd: Use ppmd-cffi@v0.3.1 and later.(#268)

Added

	PPMd compression/decompression support.(#255)

	New API to set methods to set header encode mode, encode or encrypted.(#259)

	Support Python 3.9.(#261)

	Support arm64/aarch64 architecture on Linux.(#262)

Fixed

	Append mode cause error when target archive use LZMA2+BCJ.(#266)

	Fix zstandard compression/decompression.(#258)

Deprecated

	Drop support for python 3.5 which become end-of-line in Sept. 2020.

v0.10.1 [https://github.com/miurahr/py7zr/compare/v0.10.0...v0.10.1]

Fixed

	Fix exception when reading header which size is larger than buffer size (#252)

v0.10.0 [https://github.com/miurahr/py7zr/compare/v0.9.2...v0.10.0]

Added

	Compatibility test with python-libarchive-c/libarchive for compression(#247)

	Document: express how to handle multi-volume archive (#243)

	SevenZipFile.needs_password() method.(#208, #235)

	CLI: Support append mode command line.(#228)

	Support “APPEND” mode. User can open SevenZipFile() class with mode=’a’ (#227)

Changed

	Calculate CRC32 of header without re-reading header from disk again.(#245)

	read(), extract(): improve performance when specifying parts of archived file,
by skipping rest of arcvhive when target file has extracted.(#239,#242)

	read(), extract(): improve performance when specifying parts of archived file,
by not running threads for unused compression blocks(folders).(#239,#242)

	docs: improve API documentation.(#244)

	setup: set minimum required python version as >=3.5

	Compression will be happened when call write() not close() (#222, #226)

	Handle file read/write in SevenZipCompressor/Decompressor class (#213)

Fixed

	Fix BCJ(x86) filter code with a missing logic which cause extraction error
for certain data. (#249, #250)

	Raise PasswordRequired when encrypted header without passing password (#234, #237)

	CLI: don’t raise exception when password is wrong or not given.(#229)

	Fix specification typo.

	Catch exception in threading extraction(#218,#219)

v0.9.2 [https://github.com/miurahr/py7zr/compare/v0.9.1...v0.9.2]

Changed

	Utilize max_length argument for each decompressor.(#210, #211)

	Change READ_BUFFER_SIZE 32768 for python 3.7.5 and before.

	Extend Buffer size when necessary.(#209)

v0.9.1 [https://github.com/miurahr/py7zr/compare/v0.9.0...v0.9.1]

Changed

	Improve DecompressionChain.decompress() logics.(#207)

Fixed

	Fix BCJ filter for decompression that can cause infinite loop or wrong output.(#204,#205,#206)

v0.9.0 [https://github.com/miurahr/py7zr/compare/v0.8.0...v0.9.0]

Added

	BCJ Decoder/Encoder written by python.(#198, #199)

	Support Bzip2, Defalte + BCJ(X86, PPC, ARM, ARMT, SPARC) (#199)

	Add Copy method as an extraction only support.(#184)

Changed

	Use large(1MB) read blocksize for Python 3.7.5 and later and PyPy 7.2.0 and later.

	Set ZStandard compression as unsupported because of a bug with unknown reason.(#198)

	Manage compression methods to handle whether decompressor requires coder[‘property’] or not.

Fixed

	Significantly improve decompress performance which is as same speed as v0.7.*.
by updating buffer handling.

	Fix decompression max_size to pass lzma module. Now it is as same as out_remaining.

	Support LZMA+BCJ(X86, PPC, ARM, ARMT, SPARC) with alternative BCJ filter.(#198, #199)

	Fix packinfo crc read and write (#187, #189)

	Accept archive which Method ID is NULL(size=0)(#181, #182)

	CLI: Does not crash when trying extract archive which use unsupported method(#183)

v0.8.0 [https://github.com/miurahr/py7zr/compare/v0.7.3...v0.8.0]

Added

	test: add test for #178 bug report the case of LZMA+BCJ as xfails.

	File format specification: add ISO/IEC standard style specification document.

	Support extra methods for archiveinfo() method.(#150)

	test: unit tests for Sparc, ARMT and IA64 filters.

	Support for PPC and ARM filters.

	Support encryption(#145)

	Export supported filter constants, such as FILTER_ZSTD(#145)

Changed

	Improve README, documents and specifications.

	Update password handling and drop get_password() helper (#162)

	Enable encoded header and add more test with 7zip compatibility.(#164)

	Refactoring SevenZipFile class internals. (#160)

	Refactoring classes in compressor module. (#161)

	Add ‘packinfo.crcs’ field digests data when creating archive.(#157)
It help checking archive integrity without extraction.

	CLI: help option to show py7zr version and python version.

	Use importlib for performance improvement instead of pkg_resources module.

	Documents: additional methods, filter examples.

	CI configurations: Manage coverage with Coveralls.

	Refactoring decompression classes to handle data precisely with folder.unpacksizes(#146)

	Default compression mode is LZMA2+BCJ which is as same as
7zip and p7zip(#145)

	Enhance encryption strength, IV is now 16 bytes, and generated
with cryptodom.random module.(#145)

	Refactoring compression algorythm related modules.

Fixed

	Now return correct header size by archiveinfo() method.(#169)

	Disable adding CRC for encoded header packinfo.(#164)

	Fix password leak/overwrite among SevenZipFile objects in a process.(#159)
This can cause decryption error or encryption with unintended password.

	Release password on close()

	SevenZipFile.test() method now working properly. (#155)

	Fix extraction error on python 3.5.(#151)

	Support combination of filters(#145)

	Compression of Delta, BZip2, ZStandard, and Deflate(#145)

	Fix archived head by multiple filter specified.

	Fix delta filter.

	Working with BCJ filter.

	Fix archiveinfo to provide proper names.

Removed

	test: Drop some test case with large files.

	Drop ArchiveProperty class: A field has already deprecated or not used.(#170)

	Drop AntiFile property: a property has already deprecated or not used.

	remove final_header definition.

v0.7.3 [https://github.com/miurahr/py7zr/compare/v0.7.2...v0.7.3]

Added

	Support for encrypted header (#139, #140)

Changed

	Fix CRC32 check and introduce test and testzip methods (#138)

Fixed

	Allow decryption of data which is encrypted without any compression.(#140)

v0.7.2 [https://github.com/miurahr/py7zr/compare/v0.7.1...v0.7.2]

Added

	CLI: ‘-v {size}[b|k|m|g]’ multi volume creation option.

v0.7.1 [https://github.com/miurahr/py7zr/compare/v0.7.0...v0.7.1]

Changed

	Decryption: performance improvement.
Introduce helpers.calculate_key3(), which utilize list comprehension expression, bytes generation
with join(). It reduces a number of calls of hash library and improve decryption performance.

Fixed

	Fix overwrite behavior of symbolic link which may break linked contents.

v0.7.0 [https://github.com/miurahr/py7zr/compare/v0.6...v0.7.0]

Added

	Support dereference option of SevenZipFile class. (#131)
If dereference is False, add symbolic and hard links to the archive.
If it is True, add the content of the target files to the archive.
This has no effect on systems that do not support symbolic links.

	Introduce progress callback mechanism (#130)

	Support memory API.(#111, #119)
Introduce read(filter) and readall() method for SevenZipFile class.

	Support ZStandard codec compression algorithm for extraction.(#124, #125)

Changed

	Extraction: Unlink output file if exist when it become a symbolic link.
When overwrite extracted files and there are symlinks, it may cause an unexpected result.
Unlinking it may help it.

	CLI: add –verbose option for extraction

	win32: update win32compat

	Drop pywin32 dependency(#120)

	Introduce internal win32compat.py

	Archive: Looking for symbolic link object in the archived list,
and if found, record as relative link.(#112, #113, #122)

Fixed

	Fix archiveinfo() for 7zAES archives

	Release variables when close() (#129)

	Support extraction of file onto a place where path length is > 260 bytes on Windows 10, Windows Server 2016R2
and later. (Windows Vista, 7 and Windows Server 2012 still have a limitation of path length as a OS spec)(#116, #126)

Removed

	Revmoed requirements.txt. When you want to install dependencies for development
you can do it with ‘pip install -e path/to/py7zr_project’

v0.6 [https://github.com/miurahr/py7zr/compare/v0.5...v0.6]

Added

	Test: SevenZipFile.archiveinfo() for various archives.

	Test: extraction of LZMA+BCJ archive become fails as marked known issue.

	Support deflate decompression method.

	Introduce context manager for SevenZipFile (#95)

	Test: add benchmarking test.

	Add concurrent extraction test.

	Add remote data test for general application test.

	Add class for multi volume header.

	Add readlink helper function for windows.

	Test: download and extract test case as a show case.

	setup.cfg: add entry-point configuration.

	Support filtering a target of extracted files from archive (#64)

	Support decryption (#55)

	Add release note automation workflow with Github actions.

	COPY decompression method.(#61)

Changed

	Update documents and README about supported algorithms.

	Re-enable coverage report.

	Refactoring SevenZipFile._write_archive() method to move
core chunk into compression module Worker.archive() method.

	Update calculate_key helper to improve performance.

	Introduce zero-copy buffer helper.

	
	Change decompressor class interface
	
	change max_length type to int and defualt to -1.

	Update decryption function to improve performance.

	SevenZipFile(file-object, ‘r’) now can run extract() well even unlink before extract().

	Concurrency strategy: change to threading instead of multiprocessing. (#92)

	Release process is done by Github Actions

	Temporary disable to measure coverage, which is not working with threading.

	Tox: now pass PYTEST_ADDOPTS environment variable.

	extract: decompression is done as another process in default.

	extract: default multiprocessing mode is spawn

	extract: single process mode for password protected archive.

	Use spawn multiprocessing mode for all platforms.

	Use self context for multiprocessing.

	Concurrency implementation changes to use multiprocessing.Process() instead of
concurrency.futures to avoid freeze or deadlock with application usage of it.(#70)

	Stop checking coverage because coverage.py > 5.0.0 produce error when multiprocessing.Process() usage.

	Drop handlers, NullHandler, BufferHnalder, and FileHander.

Fixed

	Fix SevenZipFIle.archiveinfo() crash for LZMA+BCJ archive.(#100)

	Fix SevenZipFile.test() method defeated from v0.6b2 (#103)

	Fix SevenZipFile.solid() method to return proper value. (#72,#97)

	Fix README example for extraction option.

	Some of decryption of encrypted archive fails.(#75)

	Make pywin32 a regular runtime dependency

	Build with pep517 utility.

	Fix race condition for changing current working directory of caller, which cause failures in multithreading.(#80,#82)

	extract: catch UnsupportedMethod exception properly when multiprocessing.

	Fixed extraction of 7zip file with BZip2 algorithm.(#66)

	Fix symbolic link extraction with relative path target directory.(#67)

	Fix retrieving Folder header information logics for codecs.(#62)

Security

	CLI: Use ‘getpass’ standard library to input password.(#59)

Removed

	Static py7zr binary. Now it is generated by python installer.

	Test symlink on windows.(#60)

v0.5 [https://github.com/miurahr/py7zr/compare/v0.4...v0.5]

Support making a 7zip archive.

Added

	Support for compression and archiving.

	Support encoded(compressed) header and set as default.(#39)

	SevenZipFile: accept pathlib.Path as a file argument.

	Unit test: read and write UTF-16LE string for filename.

	Support for shutil.register_archive_format() and
shutil.make_archive() by exposing pack_7zarchive()

	Support custom filters for compression.

Changed

	Update documents.

Fixed

	Fix extraction of archive which has zero size files and directories(#54).

	Revert zero size file logic(#47).

	Revert zero size file logic which break extraction by 7zip.

	Support for making archive with zero size files(#47).

	Produced broken archive when target has many directorires(#48).

	Reduce test warnings, fix annotations.

	Fix coverage error on test.

	Support for making archive with symbolic links.

	Fix write logics (#42)

	Fix read FilesInfo block.

	Skip rare case when directory already exist, that can happen multiple process working
in same working directory.

	Write: Produce a good archive file for multiple target files.

	SignatureHeader function: write nextheaderofs and nextheadersize as real_uint64.

	docs: description of start header structure.

Removed

	Drop py7zr.properties.FileAttributes; please use stat.FILE_ATTRIBUTES_*

Changed

	Test: Use tmp_path fixture which is pytest default one.

	Move setuptools configurations in setup.py into setup.cfg.

v0.4 [https://github.com/miurahr/py7zr/compare/v0.3.5...v0.4]

Added

	Support for pypy3 (pypy3.5-7.0) and later(pypy3.6-7.1 or later).

	unit test for NullHandler, BufferHandler, FileHandler.

	Update document to add 7zformat descriptions.

Changed

	NullHandler, BufferHandler, FileHandler: open() now takes mode argument.

	Upper limit of max_length of decompress() call is now io.DEFAULT_BUFFER_SIZE.
- PyPy issue: PyPy3-3088 [https://foss.heptapod.net/pypy/pypy/-/issues/3088]

	Drop padding logic introduced in v0.3.5 that may be cuased by python core bug,
when max_length > io.DEFAULT_BUFFER_SIZE.
- PyPy Issue: PyPy3-3090 [https://foss.heptapod.net/pypy/pypy/-/issues/3090]
- bpo-21872: https://bugs.python.org/issue21872
- Fix: https://github.com/python/cpython/pull/14048

	
	Remove print functions from API and moves CLI
	
	API should not output anything other than error message.
* Introduce FileInfo class to represent file attributes inside
archive.
* Introduce ArchiveInfo class to represent archive attributes.
* provide archiveinfo() method to provide ArchiveInfo object.
* now list() method returns List[FileInfo]

	Every print things moves to Cli class.

	Update tests according to API change.

	Update documents to refrect API changes.

Fixed

	Update README to indicate supported python version as 3.5 and later, pypy3 7.1 and later.

v0.3.5 [https://github.com/miurahr/py7zr/compare/v0.3.4...v0.3.5]

Changed

	Use seek&truncate for padding trailer if needed.

v0.3.4 [https://github.com/miurahr/py7zr/compare/v0.3.3...v0.3.4]

Added

	Docs: class diagram, design note, 7z formats and presentations.

	Test for a target includes padding file.

Changed

	Test file package naming.

Fixed

	Fix infinite loop when archive file need padding data for extraction.

v0.3.3 [https://github.com/miurahr/py7zr/compare/v0.3.2...v0.3.3]

Added

	Add test for zerofile with multi-foler archive.

Fixed

	Fix zerofile extraction error with multithread mode(#24, thanks @Arten013)

v0.3.2 [https://github.com/miurahr/py7zr/compare/v0.3.1...v0.3.2]

Added

	typing hints

	CI test with mypy

	Unit test: SignatureHeader.write() method.

	Unit test: unknown mode for SevenZipFile constructor.

	Unit test: SevenZipFile.write() method.

Changed

	Conditional priority not likely to be external in header.

	Refactoring read_uint64().

Fixed

	SignatureHeader.write(): fix exception to write 7zip version.

v0.3.1 [https://github.com/miurahr/py7zr/compare/v0.3...v0.3.1]

Added

	CLI i subcommand: show codec information.

	Decompression performance test as regression test.

	Add more unit test for helper functions.

Changed

	List subcommand now do not show compressed file size in solid compression.
This is as same behavior as p7zip command.

	Merge io.py into archiveinfo.py

	Drop internal intermediate queue, which is not used.

Fixed

	Always overwrite when archive has multiple file with same name.

v0.3 [https://github.com/miurahr/py7zr/compare/v0.2.0...v0.3]

Added

	Add some code related to support write feature(wip).

	Static check for import order in python sources and MANIFEST.in

Changed

	Concurrent decompression with threading when an archive is in multi folder compression.

	Pytest configurations are set in tox.ini

Fixed

	Package now has test code and data.

v0.2.0 [https://github.com/miurahr/py7zr/compare/v0.1.6...v0.2.0]

Fixed

	Detect race condition on os.mkdir

v0.1.6 [https://github.com/miurahr/py7zr/compare/v0.1.5...v0.1.6]

Fixed

	Wrong file size when lzma+bcj compression.

v0.1.5 [https://github.com/miurahr/py7zr/compare/v0.1.4...v0.1.5]

Fixed

	Suppress warning: not dequeue from queue length 0

v0.1.4 [https://github.com/miurahr/py7zr/compare/v0.1.3...v0.1.4]

Changed

	When a directory exist for target, do not raise error, and when out of it raise exception

	Refactoring FileArchivesList and FileArchive classes.

v0.1.3 [https://github.com/miurahr/py7zr/compare/v0.1.2...v0.1.3]

Changed

	When a directory exist for target, do not raise error, and when out of it raise exception

v0.1.2 [https://github.com/miurahr/py7zr/compare/v0.1.1...v0.1.2]

Changed

	Refactoring CLI with cli package and class.

Fixed

	Archive with zero size file cause exception with file not found error(#4).

Removed

	Drop unused code chunks.

	Drop Digests class and related unit test.

v0.1.1 [https://github.com/miurahr/py7zr/compare/v0.1.0...v0.1.1]

Added

	Add write(), close() and testzip() dummy methods which raises NotImplementedError.

	Add more unit tests for write functions.

Fixed

	Fix Sphinx error in documentation.

	SevenZipFile: Check mode before touch file.

	Fix write_boolean() when array size is over 8.

	Fix write_uint64() and read_uint64().

v0.1.0 [https://github.com/miurahr/py7zr/compare/v0.0.8...v0.1.0]

Added

	Introduce compression package.

	Introduce SevenZipCompressor class.

	Add write() method for each header class.

	Add tests for write methods.

	Add method for registering shutil.

Changed

	Each header classes has __slots__ definitions for speed and memory optimization.

	Rename to ‘io’ package from ‘archiveio’

	Each header classes has classmethod ‘retrieve’ and constructor does not reading a archive file anymore.

	Change to internalize _read() method for each header classes.

	get_decompressor() method now become SevenZipDecompressor class.

	Each header classes initializes members to None in constructor.

	Method definitions map become an internal member of SevenZipDecompressor or SevenZipCompressor class.

	Add test package compress

Fixed

	Fix ArchiveProperties read function.

v0.0.8 [https://github.com/miurahr/py7zr/compare/v0.0.7...v0.0.8]

Added

	Test for CLI.

Changed

	Improve main function.

	Improve tests, checks outputs with sha256

v0.0.7 [https://github.com/miurahr/py7zr/compare/v0.0.6...v0.0.7]

Added

	CI test on AppVeyor.

Changed

	Worker class refactoring.

Fixed

	Fix test cases: bugzilla_16 and github_14.

	Test: set timezone to UTC on Unix and do nothing on Windows.

v0.0.6 [https://github.com/miurahr/py7zr/compare/v0.0.5...v0.0.6]

Fixed

	Fix too many file descriptors opened error.

v0.0.5 [https://github.com/miurahr/py7zr/compare/v0.0.4...v0.0.5]

Changed

	Test: check sha256 for extracted files

Fixed

	Fix decompressiong archive with LZMA2 and BCJ method

	Fix decompressing multi block archive

	Fix file mode on unix/linux.

v0.0.4 [https://github.com/miurahr/py7zr/compare/v0.0.3...v0.0.4]

Added

	Set file modes for extracted files.

	More unit test.

Changed

	Travis-CI test on python 3.7.

Fixed

	Fix to set extracted files timestamp as same as archived.

v0.0.3 [https://github.com/miurahr/py7zr/compare/v0.0.2...v0.0.3]

Added

	PyPi package index.

Fixed

	setup: set universal = 0 because only python 3 is supported.

v0.0.2 [https://github.com/miurahr/py7zr/compare/v0.0.1...v0.0.2]

Changed

	refactoring all the code.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 py7zr	
 Read and write 7Z-format archive files.

 	
 	
 py7zr.archiveinfo	

 	
 	
 py7zr.compressor	

 	
 	
 py7zr.helpers	

 	
 	
 py7zr.py7zr	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | X
 | Z

Symbols

 	
 	
 --verbose

 	py7zr command line option

 	
 -P

 	py7zr command line option

 	
 	
 -v

 	py7zr command line option

A

 	
 	
 a

 	py7zr command line option

 	AESCompressor (class in py7zr.compressor)

 	AESDecompressor (class in py7zr.compressor)

 	archivable (py7zr.py7zr.ArchiveFile property)

 	archive() (py7zr.py7zr.Worker method)

 	
 	ArchiveFile (class in py7zr.py7zr)

 	ArchiveFileList (class in py7zr.py7zr)

 	ArchiveInfo (class in py7zr)

 	(class in py7zr.py7zr)

 	archiveinfo() (py7zr.SevenZipFile method)

 	ArchiveTimestamp (class in py7zr.helpers)

 	as_datetime() (py7zr.helpers.ArchiveTimestamp method)

B

 	
 	Bad7zFile

 	BcjArmDecoder (class in py7zr.compressor)

 	BcjArmEncoder (class in py7zr.compressor)

 	BcjArmtDecoder (class in py7zr.compressor)

 	BcjArmtEncoder (class in py7zr.compressor)

 	BCJDecoder (class in py7zr.compressor)

 	BCJEncoder (class in py7zr.compressor)

 	BcjPpcDecoder (class in py7zr.compressor)

 	BcjPpcEncoder (class in py7zr.compressor)

 	
 	BcjSparcDecoder (class in py7zr.compressor)

 	BcjSparcEncoder (class in py7zr.compressor)

 	binary file

 	blocks (in module py7zr)

 	Bond (class in py7zr.archiveinfo)

 	BrotliCompressor (class in py7zr.compressor)

 	BrotliDecompressor (class in py7zr.compressor)

 	BufferOverflow

 	bytes-like object

C

 	
 	
 c

 	py7zr command line option

 	C-contiguous

 	calculate_crc32() (in module py7zr.helpers)

 	calculate_key() (in module py7zr.helpers)

 	close() (py7zr.py7zr.SevenZipFile method)

 	(py7zr.SevenZipFile method)

 	compress() (py7zr.compressor.AESCompressor method)

 	(py7zr.compressor.BcjArmEncoder method)

 	(py7zr.compressor.BcjArmtEncoder method)

 	(py7zr.compressor.BCJEncoder method)

 	(py7zr.compressor.BcjPpcEncoder method)

 	(py7zr.compressor.BcjSparcEncoder method)

 	(py7zr.compressor.BrotliCompressor method)

 	(py7zr.compressor.CopyCompressor method)

 	(py7zr.compressor.DeflateCompressor method)

 	(py7zr.compressor.ISevenZipCompressor method)

 	(py7zr.compressor.PpmdCompressor method)

 	(py7zr.compressor.ZstdCompressor method)

 	
 	compressed (py7zr.py7zr.ArchiveFile property)

 	contiguous

 	CopyCompressor (class in py7zr.compressor)

 	CopyDecompressor (class in py7zr.compressor)

 	crc32 (py7zr.py7zr.ArchiveFile property)

D

 	
 	decompress() (py7zr.compressor.AESDecompressor method)

 	(py7zr.compressor.BcjArmDecoder method)

 	(py7zr.compressor.BcjArmtDecoder method)

 	(py7zr.compressor.BCJDecoder method)

 	(py7zr.compressor.BcjPpcDecoder method)

 	(py7zr.compressor.BcjSparcDecoder method)

 	(py7zr.compressor.BrotliDecompressor method)

 	(py7zr.compressor.CopyDecompressor method)

 	(py7zr.compressor.Deflate64Decompressor method)

 	(py7zr.compressor.DeflateDecompressor method)

 	(py7zr.compressor.ISevenZipDecompressor method)

 	(py7zr.compressor.LZMA1Decompressor method)

 	(py7zr.compressor.PpmdDecompressor method)

 	(py7zr.compressor.ZstdDecompressor method)

 	(py7zr.py7zr.Worker method)

 	
 	Deflate64Compressor (class in py7zr.compressor)

 	Deflate64Decompressor (class in py7zr.compressor)

 	DeflateCompressor (class in py7zr.compressor)

 	DeflateDecompressor (class in py7zr.compressor)

 	dst() (py7zr.helpers.LocalTimezone method)

 	(py7zr.helpers.UTC method)

E

 	
 	emptystream (py7zr.py7zr.ArchiveFile property)

 	extract() (py7zr.py7zr.Worker method)

 	(py7zr.SevenZipFile method)

 	
 	extract_single() (py7zr.py7zr.Worker method)

 	extractall() (py7zr.py7zr.SevenZipFile method)

 	(py7zr.SevenZipFile method)

F

 	
 	file object

 	file-like object

 	file_properties() (py7zr.py7zr.ArchiveFile method)

 	FileInfo (class in py7zr)

 	(class in py7zr.py7zr)

 	filename (in module py7zr)

 	(py7zr.py7zr.ArchiveFile property)

 	FilesInfo (class in py7zr.archiveinfo)

 	filetime_to_dt() (in module py7zr.helpers)

 	flush() (py7zr.compressor.AESCompressor method)

 	(py7zr.compressor.BcjArmEncoder method)

 	(py7zr.compressor.BcjArmtEncoder method)

 	(py7zr.compressor.BCJEncoder method)

 	(py7zr.compressor.BcjPpcEncoder method)

 	(py7zr.compressor.BcjSparcEncoder method)

 	(py7zr.compressor.BrotliCompressor method)

 	(py7zr.compressor.CopyCompressor method)

 	(py7zr.compressor.DeflateCompressor method)

 	(py7zr.compressor.ISevenZipCompressor method)

 	(py7zr.compressor.PpmdCompressor method)

 	(py7zr.compressor.ZstdCompressor method)

 	
 	Folder (class in py7zr.archiveinfo)

 	Fortran contiguous

 	fromutc() (py7zr.helpers.LocalTimezone method)

G

 	
 	getnames() (py7zr.py7zr.SevenZipFile method)

 	(py7zr.SevenZipFile method)

H

 	
 	has_strdata() (py7zr.py7zr.ArchiveFile method)

 	Header (class in py7zr.archiveinfo)

 	
 	header_size (in module py7zr)

 	HeaderStreamsInfo (class in py7zr.archiveinfo)

I

 	
 	
 i

 	py7zr command line option

 	is_7zfile() (in module py7zr)

 	(in module py7zr.py7zr)

 	is_directory (py7zr.py7zr.ArchiveFile property)

 	
 	is_junction (py7zr.py7zr.ArchiveFile property)

 	is_socket (py7zr.py7zr.ArchiveFile property)

 	is_symlink (py7zr.py7zr.ArchiveFile property)

 	ISevenZipCompressor (class in py7zr.compressor)

 	ISevenZipDecompressor (class in py7zr.compressor)

 	islink() (in module py7zr.helpers)

L

 	
 	
 l

 	py7zr command line option

 	lastwritetime (py7zr.py7zr.ArchiveFile property)

 	
 	list() (py7zr.py7zr.SevenZipFile method)

 	(py7zr.SevenZipFile method)

 	LocalTimezone (class in py7zr.helpers)

 	LZMA1Decompressor (class in py7zr.compressor)

M

 	
 	MemIO (class in py7zr.helpers)

 	method_names (in module py7zr)

 	MethodsType (class in py7zr.compressor)

 	
 module

 	py7zr

 	py7zr.archiveinfo

 	py7zr.compressor

 	py7zr.helpers

 	py7zr.py7zr

N

 	
 	needs_password() (py7zr.SevenZipFile method)

 	
 	NullIO (class in py7zr.helpers)

P

 	
 	pack_7zarchive() (in module py7zr)

 	(in module py7zr.py7zr)

 	PackInfo (class in py7zr.archiveinfo)

 	path-like object

 	posix_mode (py7zr.py7zr.ArchiveFile property)

 	PpmdCompressor (class in py7zr.compressor)

 	PpmdDecompressor (class in py7zr.compressor)

 	
 py7zr

 	module

 	
 py7zr command line option

 	--verbose

 	-P

 	-v

 	a

 	c

 	i

 	l

 	t

 	x

 	
 	
 py7zr.archiveinfo

 	module

 	
 py7zr.compressor

 	module

 	
 py7zr.helpers

 	module

 	
 py7zr.py7zr

 	module

 	
 Python Enhancement Proposals

 	PEP 519

R

 	
 	read() (py7zr.SevenZipFile method)

 	read_real_uint64() (in module py7zr.archiveinfo)

 	read_uint32() (in module py7zr.archiveinfo)

 	read_uint64() (in module py7zr.archiveinfo)

 	read_utf16() (in module py7zr.archiveinfo)

 	
 	readall() (py7zr.SevenZipFile method)

 	readlink() (in module py7zr.helpers)

 	readonly (py7zr.py7zr.ArchiveFile property)

 	register_filelike() (py7zr.py7zr.Worker method)

 	remove_relative_path_marker() (in module py7zr.helpers)

 	reset() (py7zr.py7zr.SevenZipFile method)

S

 	
 	set_encoded_header_mode() (py7zr.SevenZipFile method)

 	set_encrypted_header() (py7zr.SevenZipFile method)

 	SevenZipCompressor (class in py7zr.compressor)

 	SevenZipDecompressor (class in py7zr.compressor)

 	SevenZipFile (class in py7zr)

 	(class in py7zr.py7zr)

 	
 	SignatureHeader (class in py7zr.archiveinfo)

 	solid (in module py7zr)

 	st_fmt (py7zr.py7zr.ArchiveFile property)

 	stat (in module py7zr)

 	StreamsInfo (class in py7zr.archiveinfo)

 	SubstreamsInfo (class in py7zr.archiveinfo)

 	SupportedMethods (class in py7zr.compressor)

T

 	
 	
 t

 	py7zr command line option

 	test() (py7zr.SevenZipFile method)

 	testzip() (py7zr.SevenZipFile method)

 	
 	text file

 	totimestamp() (py7zr.helpers.ArchiveTimestamp method)

 	tzname() (py7zr.helpers.LocalTimezone method)

 	(py7zr.helpers.UTC method)

U

 	
 	uncompressed (in module py7zr)

 	unpack_7zarchive() (in module py7zr)

 	(in module py7zr.py7zr)

 	
 	UnpackInfo (class in py7zr.archiveinfo)

 	UTC (class in py7zr.helpers)

 	utcoffset() (py7zr.helpers.LocalTimezone method)

 	(py7zr.helpers.UTC method)

W

 	
 	Worker (class in py7zr.py7zr)

 	write() (py7zr.py7zr.SevenZipFile method)

 	(py7zr.SevenZipFile method)

 	write_real_uint64() (in module py7zr.archiveinfo)

 	write_uint32() (in module py7zr.archiveinfo)

 	
 	write_uint64() (in module py7zr.archiveinfo)

 	write_utf16() (in module py7zr.archiveinfo)

 	writeall() (py7zr.py7zr.SevenZipFile method)

 	(py7zr.SevenZipFile method)

 	WriteWithCrc (class in py7zr.archiveinfo)

X

 	
 	
 x

 	py7zr command line option

Z

 	
 	ZstdCompressor (class in py7zr.compressor)

 	
 	ZstdDecompressor (class in py7zr.compressor)

 _images/graphviz-4e317b362c07c931b481ecb1f69049904f51f5c2.png
SevenZipFile

Header SignatureHeader

nextheadercre : int
nextheaderofs : int
nextheadersize : int
startheadercre : int
version : tuple

files_info : FilesInfo
main_streams : StreamsInfo
size : int

solid : bool

build_header(folders)
retrieve(cls, fp, buffer, start_pos)
write(file, afterheader, encoded, encrypted)

calcerc(length, header_crc)
retrieve(cls, file)
write(file)

s

additional_streams main_streams|main_streams

StreamsInfo

packinfo : NoneType
substreamsinfo : NoneType
unpackinfo : NoneType

read(file)
retrieve(cls, file)
write(file)

SubstreamsInfo

HeaderStreamsInfo

digests : list

digestsdefined : list

packinfo | num_unpackstreams_folders : list
unpacksizes : list

packinfo : PackInfo

unpackinfo : UnpackInfo unpackinfo

packinfo lunpackinfo

writefile) retrieve(cls, file, numfolders, folders)
write(file, numfolders)
ackinfo unpackinfo
PackInfo
cres : list

UnpackInfo

enable_digests : bool
numstreams : int folders : list

packpos : int numfolders : int
packpositions
packsizes : list

retrieve(cls, file)

write(file)
retrieve(cls, file)
write(file)
folders
Folder

bindpairs : list

coders : list

compressor : NoneType
cre : int, NoneType
decompressor : NoneType
digestdefined : bool

files : NoneType
packed_indices : list
solid : bool

unpacksizes : list

‘get_compressor()
get_decompressor(packsize, resct)
get_unpack_size()
is_simple(coder)
prepare_coderinfo(filters)
retrieve(cls, file)

write(file)

_images/graphviz-a22212bf3536490166967f08877586ea58cec0e4.png
pyTzr.propettics

pyTzr.exceptions

py7zrhelpers

pyTzr

pyTzt.compressor

py7zr.archiveinfo

pyTzr.pyTzr

py7zr.callbacks

pyTzrcli | | py7zr._main_

py7zr.win32compat

_images/graphviz-408bdd2267cf2d9b1cfb728a72af5c638704b5e0.png
ISevenZipDecompressor

decompress(data)

decompressor\compressor

SevenZipDecompressor

cre

cchain : list

digest : int

unpacksizes

check_crc()
decompress(data, max_length)

-chain

DecompressorChain

filters : list

add_filterfilter)
decompress(data, max_length)

SevenZipCompressor

cchain
coders : list
digest
filters : list
packsize
unpacksizes

compress(data)
flush()

-chain

CompressorChain

digest : int
filters : list

packsize : int
unpacksizes

add_filterfilter)
compress(data)
flush()

ISevenZipCompressor

compress(data)
flush()

AESCompressor

ZstdDecompressor

AESDecompressor

CopyDecompressor

DeflateDecompressor

decompress(data)

decompress(data)

decompress(data)

decompress(data)

cycles : int
iv

method
salt : bytes

compress(data)
encode_filter_properties()
flush()

CompressionMethod

CopyCompressor

DeflateCompressor

ZstdCompressor

compress(data)
flush()

compress(data)
flush()

compress(data)
flush()

ARM

ARMT

BCJ

BCJ_ARM
BCJ_ARMT
BCI_IA64
BCJ_PPC
BCJ_SPARC

COPY
CRYPT_AES256_SHA256
CRYPT_RAR29AES
CRYPT_ZIPCRYPT
DELTA

1A64

LZMA

LZMA2
MISC_BROTLI
MISC_BZIP2
MISC_DEFLATE
MISC_DEFLATE64
MISC_LIZARD
MISC_LZ4
MISC_LZH
MISC_LZS
MISC_Z

MISC_ZIP
MISC_ZSTD
NSIS_BZIP2
NSIS_DEFLATE
P7Z_BCJ

P7Z_BCJ2

PPC

PPMD

SPARC

SWAP2

SWAP4

SupportedMethods

formats : list
methods : list

get_coder(cls, filter)
get_filter_id(cls, coder)
get_method_id(cls, filter)
is_compressor(cls, filter)
is_crypto(cls, filter)
is_native_coder(cls, coder)
is_native_filter(cls, filter)

_images/graphviz-43825800d271809afc145103e14672fe356d191d.png
Callback

report_end(processing_file_path, wrote_bytes)
report_postprocess()
report_start(processing_file_path, processing_bytes)
report_start_preparation()

report_warning(message)

f

ExtractCallback

_images/graphviz-ca49378f737d531ff58afe0da708b02c4e471f35.png
MemlIO

NulllO

close()

flush()

mkdir(parents, exist_ok)
open(mode)
read(length)
seek(position)
write(data)

close()
flush()
mkdir()
open(mode)
read(length)
write(data)

_images/graphviz-f06fcb38c3a358dbf1b1ce3d911b75ccd9e47903.png
SevenZipFile

afterheader

dereference : bool
encoded_header_mode : bool
filename : str

files : NoneType

folder : NoneType

fp
header : NoneType
mode : str

password : NoneType
password_protected : bool

qa
reporterd : NoneType
sig_header : NoneType
worker : NoneType

archiveinfo()
close()

extract(path, targets)
extractall(path, callback)
getnames()

Tist()

read(targets)

readall()
reporter(callback)
reset()

test()

testzip()

write(file, arcname)
writeall(path, arcname)

set_encoded_header_mode(mode)

sig_header

ig_header

SignatureHeader

‘Worker

fites flles eader fheader
Header
ArchiveFileList files_info : NoneType
T main_streams : NoneType
index : int size : int
e i solid : bool

append(file_info)

emptyfiles : list

nextheadercre : int
nextheaderofs : int
nextheadersize : int
startheadercre : int
version : tuple

files

header

sre_start
target_filepath : dict

archive(fp, folder, deref)

build_header(folders)
retrieve(cls, fp, buffer, start_pos)
write(file, afterheader, encoded, encrypted)

calcerc(length, header_crc)
retrieve(cls, file)
write(file)

extract(fp, parallel, q)

files_info \additional_streams’

FilesInfo

StreamsInfo

packinfo : NoneType
substreamsinfo : NoneType

\main_streams

packinfo

files © list unpackinfo : NoneType

retrieve(cls, file) read(file)

write(file) retrieve(cls, file)
write(file)

decompress(fp, folder, fa, size, compressed_size, sc_end)

extract_single(fp, files, src_start, src_end, q)
register_filelike(id, fileish)

SubstreamsInfo

HeaderStreamsInfo

packinfo

unpackinfo packinfo

digests : list

digestsdefined : list
num_unpackstreams_folders : list
unpacksizes : list, NoneType

unpackinfo

write(file)

retrieve(cls, file, numfolders, folders)
write(file, numfolders)

npackinfo

PackInfo

cres : list
enable_digests : bool
numstreams : int
packpos : int
packpositions
packsizes : list

retrieve(cls, file)
write(file)

ISevenZipCompressor

compress(data)

AESCompressor

AES_CBC_BLOCKSIZE : int
buf

cipher

cycles : int

flushed : bool

iv

method

salt : bytes

UnpackInfo

datastreamidx : NoneType
folders : list
numfolders : NoneType, int

retrieve(cls, file)
write(file)

folders.

lunpackinfo

Folder

con
cre

soli

bindpairs : list
coders : list

mpressor : NoneType
int, NoneType

decompressor : NoneType
digestdefined : bool

files : NoneType
packed_indices : list

lid : bool

unpacksizes : list

get.
get.
get.
is_s

_compressor()
_decompressor(packsize, resct)
_unpack_size()

simple(coder)

prepare_coderinfo(filters)
retrieve(cls, file)

write(file)
compressor lecompressor

SevenZipCompressor SevenZipDecompressor
cchain cchain
coders : list consumed : int
digest cre
filters : NoneType, list digest : NoneType, int
methods_map input_size
packsize methods_map
unpacksizes unpacksizes
compress(data) check_crc()
flush() decompress(data, max_length)

-chain cchain

CompressorChain

digest : int
filters : list

methods_map
packsize : int
unpacksizes

DecompressorChain

filters : list

add_filterfilter)
compress(data)
flush()

add_filterfilter)
decompress(data, max_length)

NI

ISevenZipDecompressor

decompress(data)

Callback

CopyDecompressor

DeflateDecompressor

ZstdDecompressor

flushed : bool

decompress(data)

decompress(data)

decompress(data)

compress(data)
encode_filter_properties()
flush()

CopyCompressor | | DeflateCompressor | | ZstdCompressor | [AESDecompressor
buf
compress(data) compress(data) compress(data) cipher
flush() flush() flush() decompress(data)
buf buf
Buffer

view : memoryview

add(data)

get()

resel()

sel(data)

report_end(processing_file_path, wrote_bytes)
report_postprocess()
report_start(processing_file_path, processing_bytes)
report_start_preparation()

report_warning(message)

ArchiveFile

archivable
compressed
cre32
emptystream
filename
folder

id
is_directory
is_junction
is_socket
is_symlink
lastwritetime
origin
posix_mode
readonly
st_fnt
uncompressed

ArchiveCallback ExtractCallback

CompressionMethod

Archivelnfo

blocks
filename
header_size
method_names
size

solid
uncompressed

file_properties()

ARM

ARMT

BCJ

BCJ_ARM
BCJ_ARMT
BCI_IA64
BCJ_PPC
BCJ_SPARC

COPY
CRYPT_AES256_SHA256
CRYPT_RAR29AES
CRYPT_ZIPCRYPT
DELTA

1A64

LZMA

LZMA2
MISC_BROTLI
MISC_BZIP2
MISC_DEFLATE
MISC_DEFLATE64
MISC_LIZARD
MISC_LZ4
MISC_LZH
MISC_LZS
MISC_Z

MISC_ZIP
MISC_ZSTD
NSIS_BZIP2
NSIS_DEFLATE
P7Z_BCJ

P7Z_BCJ2

PPC

PPMD

SPARC

SWAP2

SWAP4

Filelnfo MemlIO

archivable parent

compressed

poc close()

creationtime flush() .

P mkdir(parents, exist_ok)

is_directory open(mode)

uncompressed | | "e2d(length)

Lis seek(position)

write(data)

SupportedMethods
Nulllo formats : list

parent methods : list

close() get_coder(cls, filter)

flush() get_filter_id(cls, coder)

mkdir() get_method_id(cls, filter)

open(mode) is_compressor(cls, filter)

read(length) is_crypto(cls, filter)

write(data) native_coder(cls, coder)

is_native_filter(cls, filter)

_static/file.png

_static/logo.png

nav.xhtml

 Table of Contents

 		
 py7zr – a 7z library on python

 		
 User Guide

 		
 Getting started

 		
 Install

 		
 Dependencies

 		
 Run Command

 		
 Command-Line Interfaces

 		
 Command-line options

 		
 Common command options

 		
 Create command options

 		
 Programming APIs

 		
 Extraction

 		
 Make archive

 		
 Append files to archive

 		
 Extraction from multi-volume archive

 		
 Presentation material

 		
 API Documentation

 		
 py7zr — 7-Zip archive library

 		
 Class description

 		
 ArchiveInfo Object

 		
 SevenZipFile Object

 		
 Compression Methods

 		
 Possible filters value

 		
 Contributor guide

 		
 Development environment

 		
 Code Contributions

 		
 Profiling

 		
 Class and module design

 		
 Classes details

 		
 .7z format specification

 		
 Abstract

 		
 Copyright Notice

 		
 Introduction

 		
 Purpose

 		
 Intended audience

 		
 Scope

 		
 Trademarks

 		
 Motivation

 		
 Notations

 		
 Data Representations

 		
 BYTE

 		
 BYTEARRAY

 		
 String

 		
 Integers

 		
 BitField

 		
 BooleanList

 		
 File format

 		
 Signature Header

 		
 Property IDs

 		
 Header encode Information

 		
 Header

 		
 Pack Information

 		
 Coders Information

 		
 Folders

 		
 Codec IDs

 		
 Substreams Information

 		
 Files Information

 		
 File type and a way

 		
 Normal files

 		
 Empty files

 		
 Directories

 		
 Special Files

 		
 Appendix: BNF expression (Informative)

 		
 Appendix: CRC algorithm (normative)

 		
 Appendix: Rationale

 		
 Byte order

 		
 CRC32

 		
 Encode

 		
 Extract

 		
 UTF-16-LE

 		
 UTF-8

 		
 Authors

 		
 Glossary

 		
 Py7zr Changelog

_static/minus.png

_static/plus.png

